SlideShare a Scribd company logo
Optimal Binary Search Tree
Dr. P. Subathra
Prof/ IT
KAMARAJ College of Engg. & Tech
(AUTONOMOUS)
Madurai
Tamil Nadu
India
• If probabilities of searching for elements of a set are
known—e.g., from accumulated data about past
searches—it is natural to pose a question about an
optimal binary search tree for which the average
number of comparisons in a search is the smallest
possible.
• we limit our discussion to minimizing the average
number of comparisons in a successful search.
• The method can be extended to include unsuccessful
searches as well.
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
2
• The total number of binary search trees with n
keys is equal to the nth Catalan number
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
3
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
4
OBST CREATION
(j-i)=0
Item 1 2 3 4
Key 10 20 30 40
Freq 4 2 6 3
i j 0 1 2 3 4
0
1
2
3
4
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
5
OBST CREATION
No. of Nodes = 0
(j-i)=0
(0-0) = 0 = C[0,0]
(1-1) = 0 = C[1,1]
(2-2) = 0 = C[2,2]
(3-3) = 0 = C[3,3]
(4-4) = 0 = C[4,4]
Item 1 2 3 4
Key 10 20 30 40
Freq 4 2 6 3
i j 0 1 2 3 4
0 0
1 0
2 0
3 0
4 0
6
OBST CREATION
No. of Nodes = 1
(j-i)=1
(1-0) = 1 = C[0,1]
(2-1) = 1 = C[1,2]
(3-2) = 1 = C[2,3]
(4-3) = 1 = C[3,4]
Item 1 2 3 4
Key 10 20 30 40
Freq 4 2 6 3
i j 0 1 2 3 4
0 0
1 0
2 0
3 0
4 0
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
7
OBST CREATION
No. of Nodes = 1
(j-i)=1
(1-0) = 1 = C[0,1] = 41
(2-1) = 1 = C[1,2]
(3-2) = 1 = C[2,3]
(4-3) = 1 = C[3,4]
Item 1 2 3 4
Key 10 20 30 40
Freq 4 2 6 3
i j 0 1 2 3 4
0 0 41
1 0
2 0
3 0
4 0
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
8
OBST CREATION
No. of Nodes = 1
(j-i)=1
(1-0) = 1 = C[0,1] = 41
(2-1) = 1 = C[1,2] = 22
(3-2) = 1 = C[2,3]
(4-3) = 1 = C[3,4]
Item 1 2 3 4
Key 10 20 30 40
Freq 4 2 6 3
i j 0 1 2 3 4
0 0 41
1 0 22
2 0
3 0
4 0
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
9
OBST CREATION
No. of Nodes = 1
(j-i)=1
(1-0) = 1 = C[0,1] = 41
(2-1) = 1 = C[1,2] = 22
(3-2) = 1 = C[2,3] = 63
(4-3) = 1 = C[3,4]
Item 1 2 3 4
Key 10 20 30 40
Freq 4 2 6 3
i j 0 1 2 3 4
0 0 41
1 0 22
2 0 63
3 0
4 0
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
10
OBST CREATION
No. of Nodes = 1
(j-i)=1
(1-0) = 1 = C[0,1] = 41
(2-1) = 1 = C[1,2] = 22
(3-2) = 1 = C[2,3] = 63
(4-3) = 1 = C[3,4] = 34
Item 1 2 3 4
Key 10 20 30 40
Freq 4 2 6 3
i j 0 1 2 3 4
0 0 41
1 0 22
2 0 63
3 0 34
4 0
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
11
OBST CREATION
No. of Nodes = 2
(j-i)=2
(2-0) = 2 = C[0,2]
(3-1) = 2 = C[1,3]
(4-2) = 2 = C[2,4]
Item 1 2 3 4
Key 10 20 30 40
Freq 4 2 6 3
i j 0 1 2 3 4
0 0 41
1 0 22
2 0 63
3 0 34
4 0
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
12
OBST CREATION
No. of Nodes = 2 : (1&2)
C[0,2] : i = 0; j =2; k = 1, 2;
k =1
C[0, 1-1] + C[1, 2]
= min k=2 + (W1+W2)
C[0, 2-1] + C[2, 2]
= min k= 1 (0+2)
k= 2 (0+6)
= 2 + 6 = 81
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81
1 0 22
2 0 63
3 0 34
4 0
+ (4+2)
13
OBST CREATION
No. of Nodes = 2 : (2&3)
C[1,3] : i = 1; j =3; k = 2, 3;
k =2
C[1, 2-1] + C[2, 3]
= min k=3 + (W2+W3)
C[1, 3-1] + C[3, 3]
= min k= 2 (0+6)
k= 3 (2+0)
= 2 + 8 = 103
Item 1 2 3 4
Key 10 20 30 40
Freq
(W)
4 2 6 3
i j 0 1 2 3 4
0 0 41 81
1 0 22 103
2 0 63
3 0 34
4 0
+ (2+6)
14
OBST CREATION
No. of Nodes = 2 : (3&4)
C[2,4] : i = 2; j =4; k = 3, 4;
k =3
C[2, 3-1] + C[3, 4]
= min k=4 + (W2+W3)
C[2, 4-1] + C[4, 4]
= min k= 3 (0+3)
k= 4 (6+0)
= 3 + 9 = 123
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81
1 0 22 103
2 0 63 123
3 0 34
4 0
+ (6+3)
15
OBST CREATION
No. of Nodes = 3 :
(j-i) = 3
(3-0) = 3 = C[0,3]
(4-1) = 3 = C[1,4]
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81
1 0 22 103
2 0 63 123
3 0 34
4 0
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
16
OBST CREATION
No. of Nodes = 3 : (1,2&3)
C[0,3] : i = 0; j =3; k = 1,2,3;
k =1
C[0, 1-1] + C[1, 3]
= min k=2
C[0, 2-1] + C[2, 3]
k=3 + (W1+W2+W3)
C[0, 3-1] + C[3, 3]
= min k= 1 (0+10)
k= 2 (4+6)
k= 3 (8+0)
= 8 + 12 = 203
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203
1 0 22 103
2 0 63 123
3 0 34
4 0
+ (4+2+6)
17
OBST CREATION
No. of Nodes = 3 : (2,3 & 4)
C[1,4] : i = 1; j =4; k = 2,3,4;
k =2
C[1, 2-1] + C[2, 4]
= min k=3
C[1, 3-1] + C[3, 4]
k=4 + (W2+W3+W4)
C[1, 4-1] + C[4, 4]
= min k= 2 (0+12)
k= 3 (2+3)
k= 4 (10+0)
= 5 + 11 = 163
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203
1 0 22 103 163
2 0 63 123
3 0 34
4 0
+ (2+6+3)
18
OBST CREATION
No. of Nodes = 4 :
(j-i) = 4
(4-0) = 4 = C[0,4]
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203
1 0 22 103 163
2 0 63 123
3 0 34
4 0
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
19
OBST CREATION
No. of Nodes = 4 : (1,2,3 & 4)
C[0,4] : i = 0; j =4; k = 1,2,3,4;
k=1
C[0, 1-1] + C[1, 4]
k =2
C[0, 2-1] + C[2, 4]
= min k=3
C[0, 3-1] + C[3, 4]
k=4 + (W1+W2+W3+W4)
C[0, 4-1] + C[4, 4]
= min k=1 (0+16)
k= 2 (4+12)
k= 3 (8+3)
k= 4 (20+0)
= 11 + 15 = 263
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
+ (4+2+6+3)
20
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
r(0, 4)
3
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
21
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
r(0, 4)
3
r(left, root-1) r(root, right)
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
22
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
r(0, 4)
r(0,2) r(3,4)
3
r(left, root-1) r(root, right)
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
23
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
r(0, 4)
r(0,2) r(3,4)
3
1 4
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
24
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
r(0, 4)
r(0,2) r(3,4)
3
1 4
r(left, root-1) r(root, right)
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
25
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
r(0, 4)
r(0,2) r(3,4)
3
1 4
r(0,0) r(1,2)
r(left, root-1) r(root, right)
2
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
26
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
r(0, 4)
r(0,2) r(3,4)
3
1 4
r(0,0) r(1,2)
r(left, root-1) r(root, right)
2
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
27
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
r(0, 4)
r(0,2) r(3,4)
3
1 4
r(0,0) r(1,2)
r(left, root-1) r(root, right)
2
r(1,1) r(2,2) Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
28
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
r(0, 4)
r(0,2) r(3,4)
3
1 4
r(0,0) r(1,2)
r(left, root-1) r(root, right)
2
r(1,1) r(2,2) Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
29
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
r(0, 4)
r(0,2) r(3,4)
3
1 4
r(0,0) r(1,2)
r(left, root-1) r(root, right)
2
r(1,1) r(2,2) Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
30
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
r(0, 4)
r(0,2) r(3,4)
3
1 4
r(0,0) r(1,2)
r(left, root-1) r(root, right)
2
r(1,1) r(2,2)
r(3,3) r(4,4)
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
31
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
r(0, 4)
r(0,2) r(3,4)
3
1 4
r(0,0) r(1,2)
r(left, root-1) r(root, right)
2
r(1,1) r(2,2)
r(3,3) r(4,4)
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
32
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
3
1 4
2
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
33
OBST CREATION
Item 1 2 3 4
Key 10 20 30 40
Freq (W) 4 2 6 3
i j 0 1 2 3 4
0 0 41 81 203 263
1 0 22 103 163
2 0 63 123
3 0 34
4 0
3
1 4
2
Dr. P. Subathra, KAMARAJ College of Engg &
Tech (AUTONOMOUS), Madurai,
Tamil Nadu, India
34
END…!!!

More Related Content

What's hot (20)

PPT
Divide and conquer
Dr Shashikant Athawale
 
PPTX
Divide and Conquer - Part 1
Amrinder Arora
 
PPTX
Knapsack Problem
Jenny Galino
 
PPTX
0 1 knapsack using branch and bound
Abhishek Singh
 
PPT
5.2 divide and conquer
Krish_ver2
 
PPTX
Graph coloring using backtracking
shashidharPapishetty
 
PPTX
Stressen's matrix multiplication
Kumar
 
PDF
Master theorem
fika sweety
 
PPT
finding Min and max element from given array using divide & conquer
Swati Kulkarni Jaipurkar
 
PPTX
Sum of subset problem.pptx
V.V.Vanniaperumal College for Women
 
PPTX
Strassen's matrix multiplication
Megha V
 
PDF
Token, Pattern and Lexeme
A. S. M. Shafi
 
PPTX
The n Queen Problem
Sukrit Gupta
 
PPTX
Merge Sort
Nikhil Sonkamble
 
PPT
Fundamentals of the Analysis of Algorithm Efficiency
Saranya Natarajan
 
PPT
Branch and bound
Dr Shashikant Athawale
 
PPTX
DAA-Floyd Warshall Algorithm.pptx
ArbabMaalik
 
PPT
Greedy algorithms
Rajendran
 
PPTX
Analysis and Design of Algorithms
Bulbul Agrawal
 
PPTX
OPTIMAL BINARY SEARCH
Cool Guy
 
Divide and conquer
Dr Shashikant Athawale
 
Divide and Conquer - Part 1
Amrinder Arora
 
Knapsack Problem
Jenny Galino
 
0 1 knapsack using branch and bound
Abhishek Singh
 
5.2 divide and conquer
Krish_ver2
 
Graph coloring using backtracking
shashidharPapishetty
 
Stressen's matrix multiplication
Kumar
 
Master theorem
fika sweety
 
finding Min and max element from given array using divide & conquer
Swati Kulkarni Jaipurkar
 
Sum of subset problem.pptx
V.V.Vanniaperumal College for Women
 
Strassen's matrix multiplication
Megha V
 
Token, Pattern and Lexeme
A. S. M. Shafi
 
The n Queen Problem
Sukrit Gupta
 
Merge Sort
Nikhil Sonkamble
 
Fundamentals of the Analysis of Algorithm Efficiency
Saranya Natarajan
 
Branch and bound
Dr Shashikant Athawale
 
DAA-Floyd Warshall Algorithm.pptx
ArbabMaalik
 
Greedy algorithms
Rajendran
 
Analysis and Design of Algorithms
Bulbul Agrawal
 
OPTIMAL BINARY SEARCH
Cool Guy
 

Similar to Optimal binary search tree dynamic programming (20)

PDF
DataMiningReport
?? ?
 
PPT
FP growth algorithm, data mining, data analystics
AlketaAlia
 
PPT
Tutorial on Frequent Pattern Mining Approach
MaleehaSheikh2
 
PPTX
Data Mining Lecture_4.pptx
Subrata Kumer Paul
 
DOCX
Statistics.docx
Akmal Shahzad Butt
 
PDF
Probabilistic data structures. Part 3. Frequency
Andrii Gakhov
 
PDF
Feequent Item Mining - Data Mining - Pattern Mining
Jason J Pulikkottil
 
PPTX
Data Mining - FP Growth Algorithm
GunshriPatil
 
PPTX
Project management
Avay Minni
 
PPT
Apriori algorithm
nouraalkhatib
 
PPT
The comparative study of apriori and FP-growth algorithm
deepti92pawar
 
PPTX
Association rule mining
Utkarsh Sharma
 
PDF
Sketch sort sugiyamalab-20101026 - public
Yasuo Tabei
 
PDF
B0950814
IOSR Journals
 
PDF
Lec12
Atner Yegorov
 
PDF
Simulation and Performance Analysis of Long Term Evolution (LTE) Cellular Net...
ijsrd.com
 
PPT
OptimalBinarySearchTree.ppt
Freeze16
 
PDF
Approximation Data Structures for Streaming Applications
Debasish Ghosh
 
PPTX
Dynamic programming - fundamentals review
ElifTech
 
DataMiningReport
?? ?
 
FP growth algorithm, data mining, data analystics
AlketaAlia
 
Tutorial on Frequent Pattern Mining Approach
MaleehaSheikh2
 
Data Mining Lecture_4.pptx
Subrata Kumer Paul
 
Statistics.docx
Akmal Shahzad Butt
 
Probabilistic data structures. Part 3. Frequency
Andrii Gakhov
 
Feequent Item Mining - Data Mining - Pattern Mining
Jason J Pulikkottil
 
Data Mining - FP Growth Algorithm
GunshriPatil
 
Project management
Avay Minni
 
Apriori algorithm
nouraalkhatib
 
The comparative study of apriori and FP-growth algorithm
deepti92pawar
 
Association rule mining
Utkarsh Sharma
 
Sketch sort sugiyamalab-20101026 - public
Yasuo Tabei
 
B0950814
IOSR Journals
 
Simulation and Performance Analysis of Long Term Evolution (LTE) Cellular Net...
ijsrd.com
 
OptimalBinarySearchTree.ppt
Freeze16
 
Approximation Data Structures for Streaming Applications
Debasish Ghosh
 
Dynamic programming - fundamentals review
ElifTech
 
Ad

More from P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai (20)

PPTX
3.1 Trees ( Introduction, Binary Trees & Binary Search Trees)
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
PPTX
2.2 stack applications Infix to Postfix & Evaluation of Post Fix
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
PPTX
1. C Basics for Data Structures Bridge Course
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
PDF
The stable marriage problem iterative improvement method
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
PDF
Maximum matching in bipartite graphs iterative improvement method
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
PDF
Knapsack dynamic programming formula top down (1)
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
PDF
Knapsack dynamic programming formula bottom up
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
PDF
Multiplication of integers & strassens matrix multiplication subi notes
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
PDF
Multiplication of large integers problem subi notes
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
3.1 Trees ( Introduction, Binary Trees & Binary Search Trees)
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
2.2 stack applications Infix to Postfix & Evaluation of Post Fix
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
The stable marriage problem iterative improvement method
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
Maximum matching in bipartite graphs iterative improvement method
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
Knapsack dynamic programming formula top down (1)
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
Multiplication of integers & strassens matrix multiplication subi notes
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
Multiplication of large integers problem subi notes
P. Subathra Kishore, KAMARAJ College of Engineering and Technology, Madurai
 
Ad

Recently uploaded (20)

PPTX
Explore USA’s Best Structural And Non Structural Steel Detailing
Silicon Engineering Consultants LLC
 
PPTX
FSE_LLM4SE1_A Tool for In-depth Analysis of Code Execution Reasoning of Large...
cl144
 
PDF
June 2025 Top 10 Sites -Electrical and Electronics Engineering: An Internatio...
elelijjournal653
 
PDF
FSE-Journal-First-Automated code editing with search-generate-modify.pdf
cl144
 
PPTX
Bharatiya Antariksh Hackathon 2025 Idea Submission PPT.pptx
AsadShad4
 
PDF
Authentication Devices in Fog-mobile Edge Computing Environments through a Wi...
ijujournal
 
PDF
Decision support system in machine learning models for a face recognition-bas...
TELKOMNIKA JOURNAL
 
PPTX
Artificial Intelligence jejeiejj3iriejrjifirirjdjeie
VikingsGaming2
 
PPTX
Comparison of Flexible and Rigid Pavements in Bangladesh
Arifur Rahman
 
PDF
Generative AI & Scientific Research : Catalyst for Innovation, Ethics & Impact
AlqualsaDIResearchGr
 
PDF
輪読会資料_Miipher and Miipher2 .
NABLAS株式会社
 
PPTX
CST413 KTU S7 CSE Machine Learning Neural Networks and Support Vector Machine...
resming1
 
PDF
Designing for Tomorrow – Architecture’s Role in the Sustainability Movement
BIM Services
 
PDF
lesson4-occupationalsafetyandhealthohsstandards-240812020130-1a7246d0.pdf
arvingallosa3
 
PDF
تقرير عن التحليل الديناميكي لتدفق الهواء حول جناح.pdf
محمد قصص فتوتة
 
PDF
Bayesian Learning - Naive Bayes Algorithm
Sharmila Chidaravalli
 
PDF
Clustering Algorithms - Kmeans,Min ALgorithm
Sharmila Chidaravalli
 
PPTX
Work at Height training for workers .pptx
cecos12
 
PPTX
ASBC application presentation template (ENG)_v3 (1).pptx
HassanMohammed730118
 
PDF
PRIZ Academy - Process functional modelling
PRIZ Guru
 
Explore USA’s Best Structural And Non Structural Steel Detailing
Silicon Engineering Consultants LLC
 
FSE_LLM4SE1_A Tool for In-depth Analysis of Code Execution Reasoning of Large...
cl144
 
June 2025 Top 10 Sites -Electrical and Electronics Engineering: An Internatio...
elelijjournal653
 
FSE-Journal-First-Automated code editing with search-generate-modify.pdf
cl144
 
Bharatiya Antariksh Hackathon 2025 Idea Submission PPT.pptx
AsadShad4
 
Authentication Devices in Fog-mobile Edge Computing Environments through a Wi...
ijujournal
 
Decision support system in machine learning models for a face recognition-bas...
TELKOMNIKA JOURNAL
 
Artificial Intelligence jejeiejj3iriejrjifirirjdjeie
VikingsGaming2
 
Comparison of Flexible and Rigid Pavements in Bangladesh
Arifur Rahman
 
Generative AI & Scientific Research : Catalyst for Innovation, Ethics & Impact
AlqualsaDIResearchGr
 
輪読会資料_Miipher and Miipher2 .
NABLAS株式会社
 
CST413 KTU S7 CSE Machine Learning Neural Networks and Support Vector Machine...
resming1
 
Designing for Tomorrow – Architecture’s Role in the Sustainability Movement
BIM Services
 
lesson4-occupationalsafetyandhealthohsstandards-240812020130-1a7246d0.pdf
arvingallosa3
 
تقرير عن التحليل الديناميكي لتدفق الهواء حول جناح.pdf
محمد قصص فتوتة
 
Bayesian Learning - Naive Bayes Algorithm
Sharmila Chidaravalli
 
Clustering Algorithms - Kmeans,Min ALgorithm
Sharmila Chidaravalli
 
Work at Height training for workers .pptx
cecos12
 
ASBC application presentation template (ENG)_v3 (1).pptx
HassanMohammed730118
 
PRIZ Academy - Process functional modelling
PRIZ Guru
 

Optimal binary search tree dynamic programming

  • 1. Optimal Binary Search Tree Dr. P. Subathra Prof/ IT KAMARAJ College of Engg. & Tech (AUTONOMOUS) Madurai Tamil Nadu India
  • 2. • If probabilities of searching for elements of a set are known—e.g., from accumulated data about past searches—it is natural to pose a question about an optimal binary search tree for which the average number of comparisons in a search is the smallest possible. • we limit our discussion to minimizing the average number of comparisons in a successful search. • The method can be extended to include unsuccessful searches as well. Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 2
  • 3. • The total number of binary search trees with n keys is equal to the nth Catalan number Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 3
  • 4. Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 4
  • 5. OBST CREATION (j-i)=0 Item 1 2 3 4 Key 10 20 30 40 Freq 4 2 6 3 i j 0 1 2 3 4 0 1 2 3 4 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 5
  • 6. OBST CREATION No. of Nodes = 0 (j-i)=0 (0-0) = 0 = C[0,0] (1-1) = 0 = C[1,1] (2-2) = 0 = C[2,2] (3-3) = 0 = C[3,3] (4-4) = 0 = C[4,4] Item 1 2 3 4 Key 10 20 30 40 Freq 4 2 6 3 i j 0 1 2 3 4 0 0 1 0 2 0 3 0 4 0 6
  • 7. OBST CREATION No. of Nodes = 1 (j-i)=1 (1-0) = 1 = C[0,1] (2-1) = 1 = C[1,2] (3-2) = 1 = C[2,3] (4-3) = 1 = C[3,4] Item 1 2 3 4 Key 10 20 30 40 Freq 4 2 6 3 i j 0 1 2 3 4 0 0 1 0 2 0 3 0 4 0 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 7
  • 8. OBST CREATION No. of Nodes = 1 (j-i)=1 (1-0) = 1 = C[0,1] = 41 (2-1) = 1 = C[1,2] (3-2) = 1 = C[2,3] (4-3) = 1 = C[3,4] Item 1 2 3 4 Key 10 20 30 40 Freq 4 2 6 3 i j 0 1 2 3 4 0 0 41 1 0 2 0 3 0 4 0 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 8
  • 9. OBST CREATION No. of Nodes = 1 (j-i)=1 (1-0) = 1 = C[0,1] = 41 (2-1) = 1 = C[1,2] = 22 (3-2) = 1 = C[2,3] (4-3) = 1 = C[3,4] Item 1 2 3 4 Key 10 20 30 40 Freq 4 2 6 3 i j 0 1 2 3 4 0 0 41 1 0 22 2 0 3 0 4 0 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 9
  • 10. OBST CREATION No. of Nodes = 1 (j-i)=1 (1-0) = 1 = C[0,1] = 41 (2-1) = 1 = C[1,2] = 22 (3-2) = 1 = C[2,3] = 63 (4-3) = 1 = C[3,4] Item 1 2 3 4 Key 10 20 30 40 Freq 4 2 6 3 i j 0 1 2 3 4 0 0 41 1 0 22 2 0 63 3 0 4 0 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 10
  • 11. OBST CREATION No. of Nodes = 1 (j-i)=1 (1-0) = 1 = C[0,1] = 41 (2-1) = 1 = C[1,2] = 22 (3-2) = 1 = C[2,3] = 63 (4-3) = 1 = C[3,4] = 34 Item 1 2 3 4 Key 10 20 30 40 Freq 4 2 6 3 i j 0 1 2 3 4 0 0 41 1 0 22 2 0 63 3 0 34 4 0 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 11
  • 12. OBST CREATION No. of Nodes = 2 (j-i)=2 (2-0) = 2 = C[0,2] (3-1) = 2 = C[1,3] (4-2) = 2 = C[2,4] Item 1 2 3 4 Key 10 20 30 40 Freq 4 2 6 3 i j 0 1 2 3 4 0 0 41 1 0 22 2 0 63 3 0 34 4 0 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 12
  • 13. OBST CREATION No. of Nodes = 2 : (1&2) C[0,2] : i = 0; j =2; k = 1, 2; k =1 C[0, 1-1] + C[1, 2] = min k=2 + (W1+W2) C[0, 2-1] + C[2, 2] = min k= 1 (0+2) k= 2 (0+6) = 2 + 6 = 81 Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 1 0 22 2 0 63 3 0 34 4 0 + (4+2) 13
  • 14. OBST CREATION No. of Nodes = 2 : (2&3) C[1,3] : i = 1; j =3; k = 2, 3; k =2 C[1, 2-1] + C[2, 3] = min k=3 + (W2+W3) C[1, 3-1] + C[3, 3] = min k= 2 (0+6) k= 3 (2+0) = 2 + 8 = 103 Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 1 0 22 103 2 0 63 3 0 34 4 0 + (2+6) 14
  • 15. OBST CREATION No. of Nodes = 2 : (3&4) C[2,4] : i = 2; j =4; k = 3, 4; k =3 C[2, 3-1] + C[3, 4] = min k=4 + (W2+W3) C[2, 4-1] + C[4, 4] = min k= 3 (0+3) k= 4 (6+0) = 3 + 9 = 123 Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 1 0 22 103 2 0 63 123 3 0 34 4 0 + (6+3) 15
  • 16. OBST CREATION No. of Nodes = 3 : (j-i) = 3 (3-0) = 3 = C[0,3] (4-1) = 3 = C[1,4] Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 1 0 22 103 2 0 63 123 3 0 34 4 0 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 16
  • 17. OBST CREATION No. of Nodes = 3 : (1,2&3) C[0,3] : i = 0; j =3; k = 1,2,3; k =1 C[0, 1-1] + C[1, 3] = min k=2 C[0, 2-1] + C[2, 3] k=3 + (W1+W2+W3) C[0, 3-1] + C[3, 3] = min k= 1 (0+10) k= 2 (4+6) k= 3 (8+0) = 8 + 12 = 203 Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 1 0 22 103 2 0 63 123 3 0 34 4 0 + (4+2+6) 17
  • 18. OBST CREATION No. of Nodes = 3 : (2,3 & 4) C[1,4] : i = 1; j =4; k = 2,3,4; k =2 C[1, 2-1] + C[2, 4] = min k=3 C[1, 3-1] + C[3, 4] k=4 + (W2+W3+W4) C[1, 4-1] + C[4, 4] = min k= 2 (0+12) k= 3 (2+3) k= 4 (10+0) = 5 + 11 = 163 Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 1 0 22 103 163 2 0 63 123 3 0 34 4 0 + (2+6+3) 18
  • 19. OBST CREATION No. of Nodes = 4 : (j-i) = 4 (4-0) = 4 = C[0,4] Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 1 0 22 103 163 2 0 63 123 3 0 34 4 0 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 19
  • 20. OBST CREATION No. of Nodes = 4 : (1,2,3 & 4) C[0,4] : i = 0; j =4; k = 1,2,3,4; k=1 C[0, 1-1] + C[1, 4] k =2 C[0, 2-1] + C[2, 4] = min k=3 C[0, 3-1] + C[3, 4] k=4 + (W1+W2+W3+W4) C[0, 4-1] + C[4, 4] = min k=1 (0+16) k= 2 (4+12) k= 3 (8+3) k= 4 (20+0) = 11 + 15 = 263 Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 + (4+2+6+3) 20
  • 21. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 r(0, 4) 3 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 21
  • 22. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 r(0, 4) 3 r(left, root-1) r(root, right) Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 22
  • 23. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 r(0, 4) r(0,2) r(3,4) 3 r(left, root-1) r(root, right) Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 23
  • 24. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 r(0, 4) r(0,2) r(3,4) 3 1 4 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 24
  • 25. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 r(0, 4) r(0,2) r(3,4) 3 1 4 r(left, root-1) r(root, right) Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 25
  • 26. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 r(0, 4) r(0,2) r(3,4) 3 1 4 r(0,0) r(1,2) r(left, root-1) r(root, right) 2 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 26
  • 27. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 r(0, 4) r(0,2) r(3,4) 3 1 4 r(0,0) r(1,2) r(left, root-1) r(root, right) 2 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 27
  • 28. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 r(0, 4) r(0,2) r(3,4) 3 1 4 r(0,0) r(1,2) r(left, root-1) r(root, right) 2 r(1,1) r(2,2) Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 28
  • 29. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 r(0, 4) r(0,2) r(3,4) 3 1 4 r(0,0) r(1,2) r(left, root-1) r(root, right) 2 r(1,1) r(2,2) Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 29
  • 30. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 r(0, 4) r(0,2) r(3,4) 3 1 4 r(0,0) r(1,2) r(left, root-1) r(root, right) 2 r(1,1) r(2,2) Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 30
  • 31. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 r(0, 4) r(0,2) r(3,4) 3 1 4 r(0,0) r(1,2) r(left, root-1) r(root, right) 2 r(1,1) r(2,2) r(3,3) r(4,4) Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 31
  • 32. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 r(0, 4) r(0,2) r(3,4) 3 1 4 r(0,0) r(1,2) r(left, root-1) r(root, right) 2 r(1,1) r(2,2) r(3,3) r(4,4) Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 32
  • 33. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 3 1 4 2 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 33
  • 34. OBST CREATION Item 1 2 3 4 Key 10 20 30 40 Freq (W) 4 2 6 3 i j 0 1 2 3 4 0 0 41 81 203 263 1 0 22 103 163 2 0 63 123 3 0 34 4 0 3 1 4 2 Dr. P. Subathra, KAMARAJ College of Engg & Tech (AUTONOMOUS), Madurai, Tamil Nadu, India 34