In autonomous driving systems, the semantic segmentation task involves scene partition into numerous expressive portions by classifying and labelling every image pixel for semantics. The algorithm used for semantic segmentation has a vital role in autonomous driving architecture. This paper's main contribution is optimising the semantic segmentation algorithm for autonomous driving by modifying the U-NET architecture. The optimisation techniques involve five different methods, which include; no batch normalisation network, with batch normalisation network, network with reduction in filters, average ensemble network, and weighted average ensemble network. The validation accuracy observed for the five methods were 90.28%, 91.68%, 89.80%, 92.04%, and 92.21% respectively. By reducing the filters in the network, the computation time reduces (Epoch time: 1 s 64 ms/step) as opposed to the typical (Epoch time: 4 s 260 ms/step), but the accuracy reduces. The optimisation techniques were evaluated for metrics like mean intersection over union (IoU), IoU for class, dice-metric, dice_coefficient_loss, validation loss, and accuracy. The dataset of 300 images used for this paper's study was generated using the open-source car learning to act (CARLA) simulator platform.