This document presents an evaluation of different algorithms for performing parallel k-nearest neighbor (kNN) queries on big data using the MapReduce framework. It first discusses how kNN algorithms do not scale well for large datasets. It then reviews existing MapReduce-based kNN algorithms like H-BNLJ, H-zkNNJ, and RankReduce that improve performance by partitioning data and distributing computation. The document also proposes using an adaptive indexing technique with the RankReduce algorithm. An implementation of this approach on a airline on-time statistics dataset shows it achieves better precision and speed than other algorithms.