This document summarizes a research paper that proposes a new Particle Swarm Optimization (PSO) based K-Prototype clustering algorithm to cluster mixed numeric and categorical data. It begins with background information on clustering algorithms like K-Means, K-Modes, and K-Prototype. It then describes the K-Prototype algorithm, PSO, and discrete binary PSO. Related work integrating PSO with other clustering algorithms is also reviewed. The proposed approach uses binary PSO to select improved initial prototypes for K-Prototype clustering in order to obtain better clustering results than traditional K-Prototype and avoid local optima.