Pattern recognition is one of the prime concepts in current technologies in both private and public sectors.
The analysis and recognition of two or more patterns is a complex task due to several factors. The
consideration of two or more patterns requires huge space for keeping the storage media as well as
computational aspect. Vector logic gives very good strategy for recognition of patterns. This paper
proposes pattern recognition in multimodal authentication system with the use of vector logic and makes
the computation model hard and less error rate. Using PCA two to three biometric patterns will be fusion
and then various key sizes will be extracted using LU factorization approach. The selected keys will be
combined using vector logic, which introduces a memory model often called Context Dependent Memory
Model (CDMM) as computational model in multimodal authentication system that gives very accurate and
very effective outcome for authentication as well as verification. In the verification step, Mean Square
Error (MSE) and Normalized Correlation (NC) as metrics to minimize the error rate for the proposed
model and the performance analysis will be presented.
Related topics: