SlideShare a Scribd company logo
PFC306 
Brendan Gregg, Performance Engineering, Netflix 
November 12, 2014 | Las Vegas, NV
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
S3 
EC2 
Cassandra 
Applications 
(Services) 
EVCache 
ELB 
Elasticsearch 
SES SQS
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Start 
i2 Select memory to 
cache working set 
Find best 
balance
ASG-v011 
… 
Instance 
Instance 
Instance 
ASG Cluster 
prod1 
ASG-v010 
… 
Instance 
Instance 
Instance 
Canary 
ELB
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Select instance families Select resources 
From any desired 
resource, see 
types & cost
eg, 8 vCPU:
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Acceptable Headroom Unacceptable
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Cost per hour 
Services
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
# schedtool –B PID
vm.swappiness = 0 # from 60
# echo never > /sys/kernel/mm/transparent_hugepage/enabled # from madvise
vm.dirty_ratio = 80 # from 40 
vm.dirty_background_ratio = 5 # from 10 
vm.dirty_expire_centisecs = 12000 # from 3000 
mount -o defaults,noatime,discard,nobarrier …
/sys/block/*/queue/rq_affinity2 
/sys/block/*/queue/scheduler noop 
/sys/block/*/queue/nr_requests256 
/sys/block/*/queue/read_ahead_kb 256 
mdadm –chunk=64 ...
net.core.somaxconn = 1000 
net.core.netdev_max_backlog = 5000 
net.core.rmem_max = 16777216 
net.core.wmem_max = 16777216 
net.ipv4.tcp_wmem = 4096 12582912 16777216 
net.ipv4.tcp_rmem = 4096 12582912 16777216 
net.ipv4.tcp_max_syn_backlog = 8096 
net.ipv4.tcp_slow_start_after_idle = 0 
net.ipv4.tcp_tw_reuse = 1 
net.ipv4.ip_local_port_range = 10240 65535 
net.ipv4.tcp_abort_on_overflow = 1 # maybe
echo tsc > /sys/devices/system/clocksource/clocksource0/current_clocksource
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Resource 
Utilization 
X (%)
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Application 
System Libraries 
System Calls 
Kernel 
Devices
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
$ sar -n TCP,ETCP,DEV 1 
Linux 3.2.55 (test-e4f1a80b) 08/18/2014 _x86_64_ (8 CPU) 
09:10:43 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s 
09:10:44 PM lo 14.00 14.00 1.34 1.34 0.00 0.00 0.00 
09:10:44 PM eth0 4114.00 4186.00 4537.46 28513.24 0.00 0.00 0.00 
09:10:43 PM active/s passive/s iseg/s oseg/s 
09:10:44 PM 21.00 4.00 4107.00 22511.00 
09:10:43 PM atmptf/s estres/s retrans/s isegerr/s orsts/s 
09:10:44 PM 0.00 0.00 36.00 0.00 1.00 
[…]
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Stack frame 
Mouse-over 
frames to 
quantify 
Ancestry
# git clone https://github.com/brendangregg/FlameGraph 
# cd FlameGraph 
# perf record -F 99 -ag -- sleep 60 
# perf script | ./stackcollapse-perf.pl | ./flamegraph.pl > perf.svg
Performance Tuning EC2 Instances
Broken 
Java stacks 
(missing 
frame 
pointer) 
Kernel 
TCP/IP 
GC 
Idle 
thread 
Time 
Locks 
epoll
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
# ./iosnoop –ts 
Tracing block I/O. Ctrl-C to end. 
STARTs ENDs COMM PID TYPE DEV BLOCK BYTES LATms 
5982800.302061 5982800.302679 supervise 1809 W 202,1 17039600 4096 0.62 
5982800.302423 5982800.302842 supervise 1809 W 202,1 17039608 4096 0.42 
5982800.304962 5982800.305446 supervise 1801 W 202,1 17039616 4096 0.48 
5982800.305250 5982800.305676 supervise 1801 W 202,1 17039624 4096 0.43 
[…] 
# ./iosnoop –h 
USAGE: iosnoop [-hQst] [-d device] [-i iotype] [-p PID] [-n name] [duration] 
-d device # device string (eg, "202,1) 
-i iotype # match type (eg, '*R*' for all reads) 
-n name # process name to match on I/O issue 
-p PID # PID to match on I/O issue 
-Q # include queueing time in LATms 
-s # include start time of I/O (s) 
-t # include completion time of I/O (s) 
[…]
Performance Tuning EC2 Instances
# perf record –e skb:consume_skb –ag -- sleep 10 
# perf report 
[...] 
74.42% swapper [kernel.kallsyms] [k] consume_skb 
| 
--- consume_skb 
arp_process 
arp_rcv 
__netif_receive_skb_core 
__netif_receive_skb 
netif_receive_skb 
virtnet_poll 
net_rx_action 
__do_softirq 
irq_exit 
do_IRQ 
ret_from_intr 
[…] 
Summarizing stack traces for a 
tracepoint 
perf_events can do many things, 
it is hard to pick just one example
Performance Tuning EC2 Instances
ec2-guest# ./showboost 
CPU MHz : 2500 
Turbo MHz : 2900 (10 active) 
Turbo Ratio : 116% (10 active) 
CPU 0 summary every 5 seconds... 
Real CPU MHz 
TIME C0_MCYC C0_ACYC UTIL RATIO MHz 
06:11:35 6428553166 7457384521 51% 116% 2900 
06:11:40 6349881107 7365764152 50% 115% 2899 
06:11:45 6240610655 7239046277 49% 115% 2899 
[...]
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Region App Breakdowns 
Metrics 
Options 
Interactive 
Graph 
Summary Statistics
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Utilization Saturation 
Errors 
Per device 
Breakdowns
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
http://aws.amazon.com/ec2/instance-types/ 
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html 
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html 
http://www.slideshare.net/cpwatson/cpn302-yourlinuxamioptimizationandperformance 
http://www.brendangregg.com/blog/2014-09-27/from-clouds-to-roots.html 
http://www.brendangregg.com/blog/2014-05-07/what-color-is-your-xen.html 
http://www.brendangregg.com/linuxperf.html 
http://www.slideshare.net/brendangregg/linux-performance-tools-2014 
http://www.brendangregg.com/USEmethod/use-linux.html 
http://www.brendangregg.com/blog/2014-06-12/java-flame-graphs.html 
https://github.com/brendangregg/FlameGraph https://github.com/brendangregg/perf-tools
Performance Tuning EC2 Instances
Talk Time Title 
PFC-305 Wednesday, 1:15pm Embracing Failure: Fault Injection and Service Reliability 
BDT-403 Wednesday, 2:15pm Next Generation Big Data Platform at Netflix 
PFC-306 Wednesday, 3:30pm Performance Tuning EC2 
DEV-309 Wednesday, 3:30pm From Asgard to Zuul, How Netflix’s proven Open Source 
Tools can accelerate and scale your services 
ARC-317 Wednesday, 4:30pm Maintaining a Resilient Front-Door at Massive Scale 
PFC-304 Wednesday, 4:30pm Effective Inter-process Communications in the Cloud: The 
Pros and Cons of Micro Services Architectures 
ENT-209 Wednesday, 4:30pm Cloud Migration, Dev-Ops and Distributed Systems 
APP-310 Friday, 9:00am Scheduling using Apache Mesos in the Cloud
Performance Tuning EC2 Instances

More Related Content

PDF
Linux Performance Analysis: New Tools and Old Secrets
PDF
Velocity 2015 linux perf tools
PDF
High-Performance Networking Using eBPF, XDP, and io_uring
PDF
Linux Systems Performance 2016
PDF
BPF: Tracing and more
PDF
Performance Wins with eBPF: Getting Started (2021)
PDF
The Linux Block Layer - Built for Fast Storage
PDF
Blazing Performance with Flame Graphs
Linux Performance Analysis: New Tools and Old Secrets
Velocity 2015 linux perf tools
High-Performance Networking Using eBPF, XDP, and io_uring
Linux Systems Performance 2016
BPF: Tracing and more
Performance Wins with eBPF: Getting Started (2021)
The Linux Block Layer - Built for Fast Storage
Blazing Performance with Flame Graphs

What's hot (20)

PDF
Making Linux do Hard Real-time
PDF
eBPF Trace from Kernel to Userspace
PDF
BPF Internals (eBPF)
PDF
Container Performance Analysis
PDF
Kernel Recipes 2017: Using Linux perf at Netflix
PDF
YOW2021 Computing Performance
PDF
Linux Performance Profiling and Monitoring
PDF
USENIX ATC 2017: Visualizing Performance with Flame Graphs
PDF
Linux Networking Explained
PDF
OSTree: OSイメージとパッケージシステムの間にGitのアプローチを
PDF
re:Invent 2019 BPF Performance Analysis at Netflix
PDF
Linux Performance Tools
PDF
New Ways to Find Latency in Linux Using Tracing
PDF
Java Performance Analysis on Linux with Flame Graphs
PDF
BPF - in-kernel virtual machine
PDF
3種類のTEE比較(Intel SGX, ARM TrustZone, RISC-V Keystone)
PDF
LinuxCon 2015 Linux Kernel Networking Walkthrough
PDF
FPGA+SoC+Linux実践勉強会資料
PDF
Linux Profiling at Netflix
Making Linux do Hard Real-time
eBPF Trace from Kernel to Userspace
BPF Internals (eBPF)
Container Performance Analysis
Kernel Recipes 2017: Using Linux perf at Netflix
YOW2021 Computing Performance
Linux Performance Profiling and Monitoring
USENIX ATC 2017: Visualizing Performance with Flame Graphs
Linux Networking Explained
OSTree: OSイメージとパッケージシステムの間にGitのアプローチを
re:Invent 2019 BPF Performance Analysis at Netflix
Linux Performance Tools
New Ways to Find Latency in Linux Using Tracing
Java Performance Analysis on Linux with Flame Graphs
BPF - in-kernel virtual machine
3種類のTEE比較(Intel SGX, ARM TrustZone, RISC-V Keystone)
LinuxCon 2015 Linux Kernel Networking Walkthrough
FPGA+SoC+Linux実践勉強会資料
Linux Profiling at Netflix
Ad

Viewers also liked (17)

PDF
Velocity 2017 Performance analysis superpowers with Linux eBPF
PDF
SREcon 2016 Performance Checklists for SREs
PDF
ACM Applicative System Methodology 2016
PDF
Stop the Guessing: Performance Methodologies for Production Systems
PDF
Netflix: From Clouds to Roots
PDF
Linux BPF Superpowers
PPTX
Broken Linux Performance Tools 2016
PPTX
No data loss pipeline with apache kafka
PDF
RxNetty vs Tomcat Performance Results
PDF
Linux 4.x Tracing: Performance Analysis with bcc/BPF
ODP
G1 Garbage Collector: Details and Tuning
PPTX
Am I reading GC logs Correctly?
PDF
Troubleshooting PostgreSQL Streaming Replication
PDF
Row Pattern Matching in SQL:2016
PDF
Designing Tracing Tools
PPTX
Shell,信号量以及java进程的退出
PDF
Linux 4.x Tracing Tools: Using BPF Superpowers
Velocity 2017 Performance analysis superpowers with Linux eBPF
SREcon 2016 Performance Checklists for SREs
ACM Applicative System Methodology 2016
Stop the Guessing: Performance Methodologies for Production Systems
Netflix: From Clouds to Roots
Linux BPF Superpowers
Broken Linux Performance Tools 2016
No data loss pipeline with apache kafka
RxNetty vs Tomcat Performance Results
Linux 4.x Tracing: Performance Analysis with bcc/BPF
G1 Garbage Collector: Details and Tuning
Am I reading GC logs Correctly?
Troubleshooting PostgreSQL Streaming Replication
Row Pattern Matching in SQL:2016
Designing Tracing Tools
Shell,信号量以及java进程的退出
Linux 4.x Tracing Tools: Using BPF Superpowers
Ad

Similar to Performance Tuning EC2 Instances (20)

PDF
Performance tweaks and tools for Linux (Joe Damato)
PDF
Debugging Ruby Systems
PDF
Debugging Ruby
PDF
YOW2020 Linux Systems Performance
PDF
ATO Linux Performance 2018
ODP
Dpdk performance
PPT
Performance tuning jvm
PDF
PerfUG 3 - perfs système
PDF
May2010 hex-core-opt
PPTX
Debugging linux issues with eBPF
PDF
Osol Pgsql
PPTX
Linux Improvements in Memory Corruption Based Protections
PDF
Java/Spring과 Node.js의공존
PDF
SiteGround Tech TeamBuilding
PDF
LISA2019 Linux Systems Performance
PDF
PDF
CONFidence 2017: Escaping the (sand)box: The promises and pitfalls of modern ...
PDF
Reverse engineering Swisscom's Centro Grande Modem
PDF
Deep Dive on Amazon EC2 Instances (March 2017)
PDF
SOFA Tutorial
Performance tweaks and tools for Linux (Joe Damato)
Debugging Ruby Systems
Debugging Ruby
YOW2020 Linux Systems Performance
ATO Linux Performance 2018
Dpdk performance
Performance tuning jvm
PerfUG 3 - perfs système
May2010 hex-core-opt
Debugging linux issues with eBPF
Osol Pgsql
Linux Improvements in Memory Corruption Based Protections
Java/Spring과 Node.js의공존
SiteGround Tech TeamBuilding
LISA2019 Linux Systems Performance
CONFidence 2017: Escaping the (sand)box: The promises and pitfalls of modern ...
Reverse engineering Swisscom's Centro Grande Modem
Deep Dive on Amazon EC2 Instances (March 2017)
SOFA Tutorial

More from Brendan Gregg (20)

PDF
IntelON 2021 Processor Benchmarking
PDF
Systems@Scale 2021 BPF Performance Getting Started
PDF
Computing Performance: On the Horizon (2021)
PDF
Performance Wins with BPF: Getting Started
PDF
UM2019 Extended BPF: A New Type of Software
PDF
LPC2019 BPF Tracing Tools
PDF
LSFMM 2019 BPF Observability
PDF
YOW2018 CTO Summit: Working at netflix
PDF
eBPF Perf Tools 2019
PDF
YOW2018 Cloud Performance Root Cause Analysis at Netflix
PDF
BPF Tools 2017
PDF
NetConf 2018 BPF Observability
PDF
FlameScope 2018
PDF
Linux Performance 2018 (PerconaLive keynote)
PDF
How Netflix Tunes EC2 Instances for Performance
PDF
LISA17 Container Performance Analysis
PDF
Kernel Recipes 2017: Performance Analysis with BPF
PDF
EuroBSDcon 2017 System Performance Analysis Methodologies
PDF
OSSNA 2017 Performance Analysis Superpowers with Linux BPF
PDF
USENIX ATC 2017 Performance Superpowers with Enhanced BPF
IntelON 2021 Processor Benchmarking
Systems@Scale 2021 BPF Performance Getting Started
Computing Performance: On the Horizon (2021)
Performance Wins with BPF: Getting Started
UM2019 Extended BPF: A New Type of Software
LPC2019 BPF Tracing Tools
LSFMM 2019 BPF Observability
YOW2018 CTO Summit: Working at netflix
eBPF Perf Tools 2019
YOW2018 Cloud Performance Root Cause Analysis at Netflix
BPF Tools 2017
NetConf 2018 BPF Observability
FlameScope 2018
Linux Performance 2018 (PerconaLive keynote)
How Netflix Tunes EC2 Instances for Performance
LISA17 Container Performance Analysis
Kernel Recipes 2017: Performance Analysis with BPF
EuroBSDcon 2017 System Performance Analysis Methodologies
OSSNA 2017 Performance Analysis Superpowers with Linux BPF
USENIX ATC 2017 Performance Superpowers with Enhanced BPF

Recently uploaded (20)

PPTX
A Presentation on Artificial Intelligence
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
TLE Review Electricity (Electricity).pptx
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Machine learning based COVID-19 study performance prediction
PPTX
1. Introduction to Computer Programming.pptx
PPTX
cloud_computing_Infrastucture_as_cloud_p
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
Encapsulation theory and applications.pdf
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Getting Started with Data Integration: FME Form 101
PDF
A comparative analysis of optical character recognition models for extracting...
A Presentation on Artificial Intelligence
Building Integrated photovoltaic BIPV_UPV.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Per capita expenditure prediction using model stacking based on satellite ima...
TLE Review Electricity (Electricity).pptx
Univ-Connecticut-ChatGPT-Presentaion.pdf
SOPHOS-XG Firewall Administrator PPT.pptx
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Programs and apps: productivity, graphics, security and other tools
Machine learning based COVID-19 study performance prediction
1. Introduction to Computer Programming.pptx
cloud_computing_Infrastucture_as_cloud_p
Digital-Transformation-Roadmap-for-Companies.pptx
Unlocking AI with Model Context Protocol (MCP)
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Encapsulation theory and applications.pdf
Advanced methodologies resolving dimensionality complications for autism neur...
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Getting Started with Data Integration: FME Form 101
A comparative analysis of optical character recognition models for extracting...

Performance Tuning EC2 Instances

  • 1. PFC306 Brendan Gregg, Performance Engineering, Netflix November 12, 2014 | Las Vegas, NV
  • 9. S3 EC2 Cassandra Applications (Services) EVCache ELB Elasticsearch SES SQS
  • 13. Start i2 Select memory to cache working set Find best balance
  • 14. ASG-v011 … Instance Instance Instance ASG Cluster prod1 ASG-v010 … Instance Instance Instance Canary ELB
  • 17. Select instance families Select resources From any desired resource, see types & cost
  • 26. Cost per hour Services
  • 37. vm.swappiness = 0 # from 60
  • 38. # echo never > /sys/kernel/mm/transparent_hugepage/enabled # from madvise
  • 39. vm.dirty_ratio = 80 # from 40 vm.dirty_background_ratio = 5 # from 10 vm.dirty_expire_centisecs = 12000 # from 3000 mount -o defaults,noatime,discard,nobarrier …
  • 40. /sys/block/*/queue/rq_affinity2 /sys/block/*/queue/scheduler noop /sys/block/*/queue/nr_requests256 /sys/block/*/queue/read_ahead_kb 256 mdadm –chunk=64 ...
  • 41. net.core.somaxconn = 1000 net.core.netdev_max_backlog = 5000 net.core.rmem_max = 16777216 net.core.wmem_max = 16777216 net.ipv4.tcp_wmem = 4096 12582912 16777216 net.ipv4.tcp_rmem = 4096 12582912 16777216 net.ipv4.tcp_max_syn_backlog = 8096 net.ipv4.tcp_slow_start_after_idle = 0 net.ipv4.tcp_tw_reuse = 1 net.ipv4.ip_local_port_range = 10240 65535 net.ipv4.tcp_abort_on_overflow = 1 # maybe
  • 42. echo tsc > /sys/devices/system/clocksource/clocksource0/current_clocksource
  • 51. Application System Libraries System Calls Kernel Devices
  • 54. $ sar -n TCP,ETCP,DEV 1 Linux 3.2.55 (test-e4f1a80b) 08/18/2014 _x86_64_ (8 CPU) 09:10:43 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s 09:10:44 PM lo 14.00 14.00 1.34 1.34 0.00 0.00 0.00 09:10:44 PM eth0 4114.00 4186.00 4537.46 28513.24 0.00 0.00 0.00 09:10:43 PM active/s passive/s iseg/s oseg/s 09:10:44 PM 21.00 4.00 4107.00 22511.00 09:10:43 PM atmptf/s estres/s retrans/s isegerr/s orsts/s 09:10:44 PM 0.00 0.00 36.00 0.00 1.00 […]
  • 59. Stack frame Mouse-over frames to quantify Ancestry
  • 60. # git clone https://github.com/brendangregg/FlameGraph # cd FlameGraph # perf record -F 99 -ag -- sleep 60 # perf script | ./stackcollapse-perf.pl | ./flamegraph.pl > perf.svg
  • 62. Broken Java stacks (missing frame pointer) Kernel TCP/IP GC Idle thread Time Locks epoll
  • 65. # ./iosnoop –ts Tracing block I/O. Ctrl-C to end. STARTs ENDs COMM PID TYPE DEV BLOCK BYTES LATms 5982800.302061 5982800.302679 supervise 1809 W 202,1 17039600 4096 0.62 5982800.302423 5982800.302842 supervise 1809 W 202,1 17039608 4096 0.42 5982800.304962 5982800.305446 supervise 1801 W 202,1 17039616 4096 0.48 5982800.305250 5982800.305676 supervise 1801 W 202,1 17039624 4096 0.43 […] # ./iosnoop –h USAGE: iosnoop [-hQst] [-d device] [-i iotype] [-p PID] [-n name] [duration] -d device # device string (eg, "202,1) -i iotype # match type (eg, '*R*' for all reads) -n name # process name to match on I/O issue -p PID # PID to match on I/O issue -Q # include queueing time in LATms -s # include start time of I/O (s) -t # include completion time of I/O (s) […]
  • 67. # perf record –e skb:consume_skb –ag -- sleep 10 # perf report [...] 74.42% swapper [kernel.kallsyms] [k] consume_skb | --- consume_skb arp_process arp_rcv __netif_receive_skb_core __netif_receive_skb netif_receive_skb virtnet_poll net_rx_action __do_softirq irq_exit do_IRQ ret_from_intr […] Summarizing stack traces for a tracepoint perf_events can do many things, it is hard to pick just one example
  • 69. ec2-guest# ./showboost CPU MHz : 2500 Turbo MHz : 2900 (10 active) Turbo Ratio : 116% (10 active) CPU 0 summary every 5 seconds... Real CPU MHz TIME C0_MCYC C0_ACYC UTIL RATIO MHz 06:11:35 6428553166 7457384521 51% 116% 2900 06:11:40 6349881107 7365764152 50% 115% 2899 06:11:45 6240610655 7239046277 49% 115% 2899 [...]
  • 72. Region App Breakdowns Metrics Options Interactive Graph Summary Statistics
  • 75. Utilization Saturation Errors Per device Breakdowns
  • 78. http://aws.amazon.com/ec2/instance-types/ http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html http://www.slideshare.net/cpwatson/cpn302-yourlinuxamioptimizationandperformance http://www.brendangregg.com/blog/2014-09-27/from-clouds-to-roots.html http://www.brendangregg.com/blog/2014-05-07/what-color-is-your-xen.html http://www.brendangregg.com/linuxperf.html http://www.slideshare.net/brendangregg/linux-performance-tools-2014 http://www.brendangregg.com/USEmethod/use-linux.html http://www.brendangregg.com/blog/2014-06-12/java-flame-graphs.html https://github.com/brendangregg/FlameGraph https://github.com/brendangregg/perf-tools
  • 80. Talk Time Title PFC-305 Wednesday, 1:15pm Embracing Failure: Fault Injection and Service Reliability BDT-403 Wednesday, 2:15pm Next Generation Big Data Platform at Netflix PFC-306 Wednesday, 3:30pm Performance Tuning EC2 DEV-309 Wednesday, 3:30pm From Asgard to Zuul, How Netflix’s proven Open Source Tools can accelerate and scale your services ARC-317 Wednesday, 4:30pm Maintaining a Resilient Front-Door at Massive Scale PFC-304 Wednesday, 4:30pm Effective Inter-process Communications in the Cloud: The Pros and Cons of Micro Services Architectures ENT-209 Wednesday, 4:30pm Cloud Migration, Dev-Ops and Distributed Systems APP-310 Friday, 9:00am Scheduling using Apache Mesos in the Cloud