SlideShare a Scribd company logo
pg_shardman:
PostgreSQL sharding
via postgres_fdw,
pg_pathman and
logical replication.
Arseny Sher, Stas Kelvich
Postgres Professional
Read and write scalability
High availability
ACID transactions
What people typically expect from the cluster
2
CAP theorem: common myths
3
Informal statement: it is impossible to implement a read/write data object that provides
all three properties.
Consistency in CAP means linearizability
wow, so strict
Availability in CAP means that any node must give non-error answer to every
query.
... but execution can take arbitrary time
P in CAP means that the system continues operation after network failure
And in real life, we always want the system to continue operation after network
failure
CAP theorem: common myths
4
This combination of availability and consistency over the wide area is generally
considered impossible due to the CAP Theorem. We show how Spanner achieves this
combination and why it is consistent with CAP.
Eric Brewer. Spanner, TrueTime & The CAP Theorem. February 14, 2017
CAP theorem: conclusions
5
We aim for
Write (and read) horizontal scalability
Mainly OLTP workload with occasional analytical queries
Decent transactions
pg_shardman is PG 10 extension, PostgreSQL license, available at GitHub
Some features require patched Postgres
pg_shardman
6
pg_shardman is a compilation of several technologies.
Scalability: hash-sharding via partitioning and fdw
HA: logical replication
ACID: 2PC + distributed snapshot manager
pg_shardman foundations
7
Let’s go up from partitioning.
Because it’s like sharding, but inside one node.
Partitioning benefits
Sequential access to single (or a few) partitions instead of random access to huge
table
Effective cache usage when most frequently used data located in several partitions
...
Sharding
8
9.6 and below:
Range and list partitioning, complex manual management
Not efficient
New declarative partitioning in 10:
+ Range and list partitioning with handy DDL
- No insertions to foreign partitions, no triggers on parent tables
- Updates moving tuples between partitions are not supported
pg_pathman extension:
Hash and range partitioning
Planning and execution optimizations
FDW support
Partitioning in PostgreSQL
9
Partitioning in PostgreSQL
10
FDW (foreign data wrappers) mechanism in PG gives access to external sources of
data. postgres_fdw extension allows querying one PG instance from another.
Going beyond one node: FDW
11
Since 9.6 postgres_fdw can push-down joins.
Since 10 postgres_fdw can push-down aggregates and more kinds of joins.
explain (analyze, costs off) select count(*)
from remote.customer
group by country_code;
QUERY PLAN
--------------------------------------------------------------
Foreign Scan (actual time=353.786..353.896 rows=100 loops=1)
Relations: Aggregate on (remote.customer)
postgres_fdw optimizations
12
Currently parallel foreign scans are not supported :(
... and limitations
13
partitioning + postgres_fdw => sharding
14
partitioning + postgres_fdw => sharding
15
pg_shardman supports only distribution by hash
It splits the load evenly
Currently it is impossible to change number of shards, it should be chosen
beforehand wisely
Too little shards will balance poorly after of nodes addition/removal
Too many shards bring overhead, especially for replication
~10 shards per node looks like adequate baseline
Another common approach for resharding is consistent hashing
Data distribution schemas
16
Possible schemas of replication
per-node, using streaming (physical) replication of PostgreSQL
High availability
17
1
1
Taken from citus docs
Per-node replication in Citus MX
18
per-node, using streaming (physical) replication of PostgreSQL
Requires 2x nodes, or 2х PG instances per node.
Possible schemas of replication
19
per-node, using streaming (physical) replication of PostgreSQL
Requires 2x nodes, or 2х PG instances per node.
per-shard, using logical replication
Possible schemas of replication
20
Logical replication – new in PostgreSQL 10
21
Logical replication – new in PostgreSQL 10
22
Replicas in pg_shardman
23
Synchronous replication:
We don’t lose transactions reported as committed
Write it blocked if replica doesn’t respond
Slower
Currently we can reliably failover only if we have 1 replica per shard
Asynchronous replication:
Last committed transactions might be lost
Writes don’t block
Faster
Synchronous, asynchronous replication and
availability
24
Node addition with seamless rebalance
25
Node failover
26
We designate one special node ’sharlord’.
It holds tables with metadata.
Metadata can be synchronously replicated somewhere to change shardlord in case
of failure.
Currently shardlord can’t hold usual data itself.
How to manage this zoo
27
select shardman.add_node(’port=5433’);
select shardman.add_node(’port=5434’);
Example
28
select shardman.add_node(’port=5433’);
select shardman.add_node(’port=5434’);
create table pgbench_accounts (aid int not null, bid int, abalance int,
filler char(84));
select shardman.create_hash_partitions(’pgbench_accounts’,’aid’, 30, 1);
Example
29
[local]:5432 ars@ars:5434=# table shardman.partitions;
part_name | node_id | relation
---------------------+---------+------------------
pgbench_accounts_0 | 1 | pgbench_accounts
pgbench_accounts_1 | 2 | pgbench_accounts
pgbench_accounts_2 | 3 | pgbench_accounts
...
Example
30
[local]:5432 ars@ars:5434=# table shardman.replicas;
part_name | node_id | relation
---------------------+---------+------------------
pgbench_accounts_0 | 2 | pgbench_accounts
pgbench_accounts_1 | 3 | pgbench_accounts
pgbench_accounts_2 | 1 | pgbench_accounts
...
Example
31
Distributed transactions:
Distributed atomicity
Distributed isolation
Profit! (distributed)
Transactions in shardman
32
All reliable distributed systems are alike each unreliable is unreliable in its own way.
Kyle Kingsbury and Leo Tolstoy.
Transactions in shardman
33
Distributed transactions:
Atomicity: 2PC
Isolation: Clock-SI
Transactions in shardman
34
Transactions in shardman: 2PC
35
Two-phase commit is the anti-availability protocol.
P. Helland. ACM Queue, Vol. 14, Issue 2, March-April 2016.
Transactions in shardman: 2PC
36
Transactions in shardman: 2PC
37
Transactions in shardman: 2PC
38
Transactions in shardman: 2PC
39
Transactions in shardman: 2PC
40
So what we can do about it?
Make 2PC fail-recovery tolerant: X3PC, Paxos Commit
Back-up partitions!
Transactions in shardman: 2PC
41
Transactions in shardman: 2PC
42
Spanner mitigates this by having each member be a Paxos group, thus ensuring each
2PC “member” is highly available even if some of its Paxos participants are down.
Eric Brewer.
Transactions in shardman: 2PC
43
Profit? Not yet!
Transactions in shardman: isolation
44
Transactions in shardman: isolation
45
postgres_fdw.use_twophase = on
BEGIN;
UPDATE holders SET horns -= 1 WHERE holders.id = $id1;
UPDATE holders SET horns += 1 WHERE holders.id = $id2;
COMMIT;
SELECT sum(horns_count) FROM holders;
-> 1
-> -2
-> 0
Transactions in shardman: isolation
46
MVCC in two sentences:
UPDATE/DELETE create new tuple version, without in-place override
Each tx gets current database version at start (xid, csn,timestamp) and able to see
only appropriate versions.
acc1
ver 10: {1, 0}
ver 20: {1, 2}
ver 30: {1, 4}
––––– snapshot = 34 –––––
ver 40: {1, 2}
Transactions in shardman: isolation
47
BEGIN
Transactions in shardman: isolation
48
Do some serious stuff
Transactions in shardman: isolation
49
COMMIT
Transactions in shardman: isolation
50
BEGIN
Transactions in shardman: isolation
51
Do some serious web scale stuff
Transactions in shardman: isolation
52
COMMIT
Transactions in shardman: isolation
53
Transactions in shardman: Clock Skew
54
Clock-SI slightly changes visibility rules:
version = timestamp
Visibility’: Waits if tuple came from future. (Do not allow time-travel paradoxes!)
Visibility”: Waits if tuple already prepared(P) but not yet commited(C).
Commit’: Receives local versions from partitions on Prepare and Commits with
maximal version.
Transactions in shardman: isolation
55
0 2 4 6 8 10 12 14
nodes
0
10000
20000
30000
40000
50000
TPS
pgbench -N on ec2 c3.2xlarge, client is oblivious about keys distribution
single node, no shardman
pg_shardman, no replication
pg_shardman, redundancy 1, async replication
Some benchmarks
56
pg_shardman with docs is available at github.com/postgrespro/pg_shardman
Report issues on GitHub
Some features require patched postgres
github.com/postgrespro/postgres_cluster/tree/pg_shardman
2PC and distributed snapshot manager
COPY FROM to sharded tables additionaly needs patched pg_pathman
We appreciate feedback!
57

More Related Content

What's hot (20)

Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of FacebookTech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
The Hive
 
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in SparkSpark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Bo Yang
 
Cassandra & puppet, scaling data at $15 per month
Cassandra & puppet, scaling data at $15 per monthCassandra & puppet, scaling data at $15 per month
Cassandra & puppet, scaling data at $15 per month
daveconnors
 
Bucket your partitions wisely - Cassandra summit 2016
Bucket your partitions wisely - Cassandra summit 2016Bucket your partitions wisely - Cassandra summit 2016
Bucket your partitions wisely - Cassandra summit 2016
Markus Höfer
 
PostgreSQL and Linux Containers
PostgreSQL and Linux ContainersPostgreSQL and Linux Containers
PostgreSQL and Linux Containers
Jignesh Shah
 
Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...
Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...
Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...
Databricks
 
Physical Plans in Spark SQL
Physical Plans in Spark SQLPhysical Plans in Spark SQL
Physical Plans in Spark SQL
Databricks
 
Using ScyllaDB for Distribution of Game Assets in Unreal Engine
Using ScyllaDB for Distribution of Game Assets in Unreal EngineUsing ScyllaDB for Distribution of Game Assets in Unreal Engine
Using ScyllaDB for Distribution of Game Assets in Unreal Engine
ScyllaDB
 
Deep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache SparkDeep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache Spark
Databricks
 
Histograms in MariaDB, MySQL and PostgreSQL
Histograms in MariaDB, MySQL and PostgreSQLHistograms in MariaDB, MySQL and PostgreSQL
Histograms in MariaDB, MySQL and PostgreSQL
Sergey Petrunya
 
PostgreSQL Performance Tuning
PostgreSQL Performance TuningPostgreSQL Performance Tuning
PostgreSQL Performance Tuning
elliando dias
 
MariaDB Galera Cluster
MariaDB Galera ClusterMariaDB Galera Cluster
MariaDB Galera Cluster
Abdul Manaf
 
Understanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIsUnderstanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIs
Databricks
 
Cosco: An Efficient Facebook-Scale Shuffle Service
Cosco: An Efficient Facebook-Scale Shuffle ServiceCosco: An Efficient Facebook-Scale Shuffle Service
Cosco: An Efficient Facebook-Scale Shuffle Service
Databricks
 
A Technical Introduction to WiredTiger
A Technical Introduction to WiredTigerA Technical Introduction to WiredTiger
A Technical Introduction to WiredTiger
MongoDB
 
The columnar roadmap: Apache Parquet and Apache Arrow
The columnar roadmap: Apache Parquet and Apache ArrowThe columnar roadmap: Apache Parquet and Apache Arrow
The columnar roadmap: Apache Parquet and Apache Arrow
Julien Le Dem
 
Indexing in Cassandra
Indexing in CassandraIndexing in Cassandra
Indexing in Cassandra
Ed Anuff
 
The Top Five Mistakes Made When Writing Streaming Applications with Mark Grov...
The Top Five Mistakes Made When Writing Streaming Applications with Mark Grov...The Top Five Mistakes Made When Writing Streaming Applications with Mark Grov...
The Top Five Mistakes Made When Writing Streaming Applications with Mark Grov...
Databricks
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Linux tuning to improve PostgreSQL performance
Linux tuning to improve PostgreSQL performanceLinux tuning to improve PostgreSQL performance
Linux tuning to improve PostgreSQL performance
PostgreSQL-Consulting
 
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of FacebookTech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
The Hive
 
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in SparkSpark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Spark Shuffle Deep Dive (Explained In Depth) - How Shuffle Works in Spark
Bo Yang
 
Cassandra & puppet, scaling data at $15 per month
Cassandra & puppet, scaling data at $15 per monthCassandra & puppet, scaling data at $15 per month
Cassandra & puppet, scaling data at $15 per month
daveconnors
 
Bucket your partitions wisely - Cassandra summit 2016
Bucket your partitions wisely - Cassandra summit 2016Bucket your partitions wisely - Cassandra summit 2016
Bucket your partitions wisely - Cassandra summit 2016
Markus Höfer
 
PostgreSQL and Linux Containers
PostgreSQL and Linux ContainersPostgreSQL and Linux Containers
PostgreSQL and Linux Containers
Jignesh Shah
 
Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...
Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...
Lessons from the Field: Applying Best Practices to Your Apache Spark Applicat...
Databricks
 
Physical Plans in Spark SQL
Physical Plans in Spark SQLPhysical Plans in Spark SQL
Physical Plans in Spark SQL
Databricks
 
Using ScyllaDB for Distribution of Game Assets in Unreal Engine
Using ScyllaDB for Distribution of Game Assets in Unreal EngineUsing ScyllaDB for Distribution of Game Assets in Unreal Engine
Using ScyllaDB for Distribution of Game Assets in Unreal Engine
ScyllaDB
 
Deep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache SparkDeep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache Spark
Databricks
 
Histograms in MariaDB, MySQL and PostgreSQL
Histograms in MariaDB, MySQL and PostgreSQLHistograms in MariaDB, MySQL and PostgreSQL
Histograms in MariaDB, MySQL and PostgreSQL
Sergey Petrunya
 
PostgreSQL Performance Tuning
PostgreSQL Performance TuningPostgreSQL Performance Tuning
PostgreSQL Performance Tuning
elliando dias
 
MariaDB Galera Cluster
MariaDB Galera ClusterMariaDB Galera Cluster
MariaDB Galera Cluster
Abdul Manaf
 
Understanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIsUnderstanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIs
Databricks
 
Cosco: An Efficient Facebook-Scale Shuffle Service
Cosco: An Efficient Facebook-Scale Shuffle ServiceCosco: An Efficient Facebook-Scale Shuffle Service
Cosco: An Efficient Facebook-Scale Shuffle Service
Databricks
 
A Technical Introduction to WiredTiger
A Technical Introduction to WiredTigerA Technical Introduction to WiredTiger
A Technical Introduction to WiredTiger
MongoDB
 
The columnar roadmap: Apache Parquet and Apache Arrow
The columnar roadmap: Apache Parquet and Apache ArrowThe columnar roadmap: Apache Parquet and Apache Arrow
The columnar roadmap: Apache Parquet and Apache Arrow
Julien Le Dem
 
Indexing in Cassandra
Indexing in CassandraIndexing in Cassandra
Indexing in Cassandra
Ed Anuff
 
The Top Five Mistakes Made When Writing Streaming Applications with Mark Grov...
The Top Five Mistakes Made When Writing Streaming Applications with Mark Grov...The Top Five Mistakes Made When Writing Streaming Applications with Mark Grov...
The Top Five Mistakes Made When Writing Streaming Applications with Mark Grov...
Databricks
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Linux tuning to improve PostgreSQL performance
Linux tuning to improve PostgreSQL performanceLinux tuning to improve PostgreSQL performance
Linux tuning to improve PostgreSQL performance
PostgreSQL-Consulting
 

Similar to pg / shardman: шардинг в PostgreSQL на основе postgres / fdw, pg / pathman и логической репликации / Арсений Шер, Стас Кельвич (Postgres Professional) (20)

Postgres clusters
Postgres clustersPostgres clusters
Postgres clusters
Stas Kelvich
 
Percona XtraDB 集群安装与配置
Percona XtraDB 集群安装与配置Percona XtraDB 集群安装与配置
Percona XtraDB 集群安装与配置
YUCHENG HU
 
Greenplum Overview for Postgres Hackers - Greenplum Summit 2018
Greenplum Overview for Postgres Hackers - Greenplum Summit 2018Greenplum Overview for Postgres Hackers - Greenplum Summit 2018
Greenplum Overview for Postgres Hackers - Greenplum Summit 2018
VMware Tanzu
 
Percona XtraDB 集群文档
Percona XtraDB 集群文档Percona XtraDB 集群文档
Percona XtraDB 集群文档
YUCHENG HU
 
Postgres Vienna DB Meetup 2014
Postgres Vienna DB Meetup 2014Postgres Vienna DB Meetup 2014
Postgres Vienna DB Meetup 2014
Michael Renner
 
Robert Pankowecki - Czy sprzedawcy SQLowych baz nas oszukali?
Robert Pankowecki - Czy sprzedawcy SQLowych baz nas oszukali?Robert Pankowecki - Czy sprzedawcy SQLowych baz nas oszukali?
Robert Pankowecki - Czy sprzedawcy SQLowych baz nas oszukali?
SegFaultConf
 
MySQL Galera 集群
MySQL Galera 集群MySQL Galera 集群
MySQL Galera 集群
YUCHENG HU
 
High Availability for Oracle SE2
High Availability for Oracle SE2High Availability for Oracle SE2
High Availability for Oracle SE2
Markus Flechtner
 
Container Orchestration from Theory to Practice
Container Orchestration from Theory to PracticeContainer Orchestration from Theory to Practice
Container Orchestration from Theory to Practice
Docker, Inc.
 
Apache Hadoop YARN 3.x in Alibaba
Apache Hadoop YARN 3.x in AlibabaApache Hadoop YARN 3.x in Alibaba
Apache Hadoop YARN 3.x in Alibaba
DataWorks Summit
 
ScyllaDB Topology on Raft: An Inside Look
ScyllaDB Topology on Raft: An Inside LookScyllaDB Topology on Raft: An Inside Look
ScyllaDB Topology on Raft: An Inside Look
ScyllaDB
 
The Apache Cassandra ecosystem
The Apache Cassandra ecosystemThe Apache Cassandra ecosystem
The Apache Cassandra ecosystem
Alex Thompson
 
Fatkulin presentation
Fatkulin presentationFatkulin presentation
Fatkulin presentation
Enkitec
 
Distributed Postgres
Distributed PostgresDistributed Postgres
Distributed Postgres
Stas Kelvich
 
Distributed Queries in IDS: New features.
Distributed Queries in IDS: New features.Distributed Queries in IDS: New features.
Distributed Queries in IDS: New features.
Keshav Murthy
 
10 things i wish i'd known before using spark in production
10 things i wish i'd known before using spark in production10 things i wish i'd known before using spark in production
10 things i wish i'd known before using spark in production
Paris Data Engineers !
 
Container orchestration from theory to practice
Container orchestration from theory to practiceContainer orchestration from theory to practice
Container orchestration from theory to practice
Docker, Inc.
 
Neo4j after 1 year in production
Neo4j after 1 year in productionNeo4j after 1 year in production
Neo4j after 1 year in production
Andrew Nikishaev
 
2014 OSDC Talk: Introduction to Percona XtraDB Cluster and HAProxy
2014 OSDC Talk: Introduction to Percona XtraDB Cluster and HAProxy2014 OSDC Talk: Introduction to Percona XtraDB Cluster and HAProxy
2014 OSDC Talk: Introduction to Percona XtraDB Cluster and HAProxy
Bo-Yi Wu
 
A whirlwind tour of the LLVM optimizer
A whirlwind tour of the LLVM optimizerA whirlwind tour of the LLVM optimizer
A whirlwind tour of the LLVM optimizer
Nikita Popov
 
Percona XtraDB 集群安装与配置
Percona XtraDB 集群安装与配置Percona XtraDB 集群安装与配置
Percona XtraDB 集群安装与配置
YUCHENG HU
 
Greenplum Overview for Postgres Hackers - Greenplum Summit 2018
Greenplum Overview for Postgres Hackers - Greenplum Summit 2018Greenplum Overview for Postgres Hackers - Greenplum Summit 2018
Greenplum Overview for Postgres Hackers - Greenplum Summit 2018
VMware Tanzu
 
Percona XtraDB 集群文档
Percona XtraDB 集群文档Percona XtraDB 集群文档
Percona XtraDB 集群文档
YUCHENG HU
 
Postgres Vienna DB Meetup 2014
Postgres Vienna DB Meetup 2014Postgres Vienna DB Meetup 2014
Postgres Vienna DB Meetup 2014
Michael Renner
 
Robert Pankowecki - Czy sprzedawcy SQLowych baz nas oszukali?
Robert Pankowecki - Czy sprzedawcy SQLowych baz nas oszukali?Robert Pankowecki - Czy sprzedawcy SQLowych baz nas oszukali?
Robert Pankowecki - Czy sprzedawcy SQLowych baz nas oszukali?
SegFaultConf
 
MySQL Galera 集群
MySQL Galera 集群MySQL Galera 集群
MySQL Galera 集群
YUCHENG HU
 
High Availability for Oracle SE2
High Availability for Oracle SE2High Availability for Oracle SE2
High Availability for Oracle SE2
Markus Flechtner
 
Container Orchestration from Theory to Practice
Container Orchestration from Theory to PracticeContainer Orchestration from Theory to Practice
Container Orchestration from Theory to Practice
Docker, Inc.
 
Apache Hadoop YARN 3.x in Alibaba
Apache Hadoop YARN 3.x in AlibabaApache Hadoop YARN 3.x in Alibaba
Apache Hadoop YARN 3.x in Alibaba
DataWorks Summit
 
ScyllaDB Topology on Raft: An Inside Look
ScyllaDB Topology on Raft: An Inside LookScyllaDB Topology on Raft: An Inside Look
ScyllaDB Topology on Raft: An Inside Look
ScyllaDB
 
The Apache Cassandra ecosystem
The Apache Cassandra ecosystemThe Apache Cassandra ecosystem
The Apache Cassandra ecosystem
Alex Thompson
 
Fatkulin presentation
Fatkulin presentationFatkulin presentation
Fatkulin presentation
Enkitec
 
Distributed Postgres
Distributed PostgresDistributed Postgres
Distributed Postgres
Stas Kelvich
 
Distributed Queries in IDS: New features.
Distributed Queries in IDS: New features.Distributed Queries in IDS: New features.
Distributed Queries in IDS: New features.
Keshav Murthy
 
10 things i wish i'd known before using spark in production
10 things i wish i'd known before using spark in production10 things i wish i'd known before using spark in production
10 things i wish i'd known before using spark in production
Paris Data Engineers !
 
Container orchestration from theory to practice
Container orchestration from theory to practiceContainer orchestration from theory to practice
Container orchestration from theory to practice
Docker, Inc.
 
Neo4j after 1 year in production
Neo4j after 1 year in productionNeo4j after 1 year in production
Neo4j after 1 year in production
Andrew Nikishaev
 
2014 OSDC Talk: Introduction to Percona XtraDB Cluster and HAProxy
2014 OSDC Talk: Introduction to Percona XtraDB Cluster and HAProxy2014 OSDC Talk: Introduction to Percona XtraDB Cluster and HAProxy
2014 OSDC Talk: Introduction to Percona XtraDB Cluster and HAProxy
Bo-Yi Wu
 
A whirlwind tour of the LLVM optimizer
A whirlwind tour of the LLVM optimizerA whirlwind tour of the LLVM optimizer
A whirlwind tour of the LLVM optimizer
Nikita Popov
 
Ad

More from Ontico (20)

One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
Ontico
 
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Ontico
 
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Ontico
 
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Ontico
 
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Ontico
 
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
Ontico
 
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Ontico
 
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Ontico
 
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
Ontico
 
MySQL Replication — Advanced Features / Петр Зайцев (Percona)
MySQL Replication — Advanced Features / Петр Зайцев (Percona)MySQL Replication — Advanced Features / Петр Зайцев (Percona)
MySQL Replication — Advanced Features / Петр Зайцев (Percona)
Ontico
 
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Ontico
 
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Ontico
 
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Ontico
 
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Ontico
 
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
Ontico
 
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Ontico
 
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Ontico
 
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
Ontico
 
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Ontico
 
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Ontico
 
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
Ontico
 
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Ontico
 
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Ontico
 
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Ontico
 
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Ontico
 
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
Ontico
 
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Ontico
 
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Ontico
 
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
Ontico
 
MySQL Replication — Advanced Features / Петр Зайцев (Percona)
MySQL Replication — Advanced Features / Петр Зайцев (Percona)MySQL Replication — Advanced Features / Петр Зайцев (Percona)
MySQL Replication — Advanced Features / Петр Зайцев (Percona)
Ontico
 
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Ontico
 
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Ontico
 
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Ontico
 
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Ontico
 
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
Ontico
 
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Ontico
 
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Ontico
 
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
Ontico
 
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Ontico
 
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Ontico
 
Ad

Recently uploaded (20)

chemistry investigatory project for class 12
chemistry investigatory project for class 12chemistry investigatory project for class 12
chemistry investigatory project for class 12
Susis10
 
社内勉強会資料_Chain of Thought .
社内勉強会資料_Chain of Thought                           .社内勉強会資料_Chain of Thought                           .
社内勉強会資料_Chain of Thought .
NABLAS株式会社
 
Introduction to AI agent development with MCP
Introduction to AI agent development with MCPIntroduction to AI agent development with MCP
Introduction to AI agent development with MCP
Dori Waldman
 
Third Review PPT that consists of the project d etails like abstract.
Third Review PPT that consists of the project d etails like abstract.Third Review PPT that consists of the project d etails like abstract.
Third Review PPT that consists of the project d etails like abstract.
Sowndarya6
 
362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf
362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf
362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf
djiceramil
 
Development of Portable Biomass Briquetting Machine (S, A & D)-1.pptx
Development of Portable Biomass Briquetting Machine (S, A & D)-1.pptxDevelopment of Portable Biomass Briquetting Machine (S, A & D)-1.pptx
Development of Portable Biomass Briquetting Machine (S, A & D)-1.pptx
aniket862935
 
David Boutry - Mentors Junior Developers
David Boutry - Mentors Junior DevelopersDavid Boutry - Mentors Junior Developers
David Boutry - Mentors Junior Developers
David Boutry
 
A Comprehensive Investigation into the Accuracy of Soft Computing Tools for D...
A Comprehensive Investigation into the Accuracy of Soft Computing Tools for D...A Comprehensive Investigation into the Accuracy of Soft Computing Tools for D...
A Comprehensive Investigation into the Accuracy of Soft Computing Tools for D...
Journal of Soft Computing in Civil Engineering
 
Pavement and its types, Application of rigid and Flexible Pavements
Pavement and its types, Application of rigid and Flexible PavementsPavement and its types, Application of rigid and Flexible Pavements
Pavement and its types, Application of rigid and Flexible Pavements
Sakthivel M
 
New Microsoft Office Word Documentfrf.docx
New Microsoft Office Word Documentfrf.docxNew Microsoft Office Word Documentfrf.docx
New Microsoft Office Word Documentfrf.docx
misheetasah
 
Flow Chart Proses Bisnis prosscesss.docx
Flow Chart Proses Bisnis prosscesss.docxFlow Chart Proses Bisnis prosscesss.docx
Flow Chart Proses Bisnis prosscesss.docx
rifka575530
 
3. What is the principles of Teamwork_Module_V1.0.ppt
3. What is the principles of Teamwork_Module_V1.0.ppt3. What is the principles of Teamwork_Module_V1.0.ppt
3. What is the principles of Teamwork_Module_V1.0.ppt
engaash9
 
Artificial Power 2025 raport krajobrazowy
Artificial Power 2025 raport krajobrazowyArtificial Power 2025 raport krajobrazowy
Artificial Power 2025 raport krajobrazowy
dominikamizerska1
 
Rigor, ethics, wellbeing and resilience in the ICT doctoral journey
Rigor, ethics, wellbeing and resilience in the ICT doctoral journeyRigor, ethics, wellbeing and resilience in the ICT doctoral journey
Rigor, ethics, wellbeing and resilience in the ICT doctoral journey
Yannis
 
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
djiceramil
 
Montreal Dreamin' 25 - Introduction to the MuleSoft AI Chain (MAC) Project
Montreal Dreamin' 25 - Introduction to the MuleSoft AI Chain (MAC) ProjectMontreal Dreamin' 25 - Introduction to the MuleSoft AI Chain (MAC) Project
Montreal Dreamin' 25 - Introduction to the MuleSoft AI Chain (MAC) Project
Alexandra N. Martinez
 
FINAL 2013 Module 20 Corrosion Control and Sequestering PPT Slides.pptx
FINAL 2013 Module 20 Corrosion Control and Sequestering PPT Slides.pptxFINAL 2013 Module 20 Corrosion Control and Sequestering PPT Slides.pptx
FINAL 2013 Module 20 Corrosion Control and Sequestering PPT Slides.pptx
kippcam
 
The first edition of the AIAG-VDA FMEA.pptx
The first edition of the AIAG-VDA FMEA.pptxThe first edition of the AIAG-VDA FMEA.pptx
The first edition of the AIAG-VDA FMEA.pptx
Mayank Mathur
 
362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf
362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf
362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf
djiceramil
 
operationg systemsdocumentmemorymanagement
operationg systemsdocumentmemorymanagementoperationg systemsdocumentmemorymanagement
operationg systemsdocumentmemorymanagement
SNIGDHAAPPANABHOTLA
 
chemistry investigatory project for class 12
chemistry investigatory project for class 12chemistry investigatory project for class 12
chemistry investigatory project for class 12
Susis10
 
社内勉強会資料_Chain of Thought .
社内勉強会資料_Chain of Thought                           .社内勉強会資料_Chain of Thought                           .
社内勉強会資料_Chain of Thought .
NABLAS株式会社
 
Introduction to AI agent development with MCP
Introduction to AI agent development with MCPIntroduction to AI agent development with MCP
Introduction to AI agent development with MCP
Dori Waldman
 
Third Review PPT that consists of the project d etails like abstract.
Third Review PPT that consists of the project d etails like abstract.Third Review PPT that consists of the project d etails like abstract.
Third Review PPT that consists of the project d etails like abstract.
Sowndarya6
 
362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf
362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf
362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf
djiceramil
 
Development of Portable Biomass Briquetting Machine (S, A & D)-1.pptx
Development of Portable Biomass Briquetting Machine (S, A & D)-1.pptxDevelopment of Portable Biomass Briquetting Machine (S, A & D)-1.pptx
Development of Portable Biomass Briquetting Machine (S, A & D)-1.pptx
aniket862935
 
David Boutry - Mentors Junior Developers
David Boutry - Mentors Junior DevelopersDavid Boutry - Mentors Junior Developers
David Boutry - Mentors Junior Developers
David Boutry
 
Pavement and its types, Application of rigid and Flexible Pavements
Pavement and its types, Application of rigid and Flexible PavementsPavement and its types, Application of rigid and Flexible Pavements
Pavement and its types, Application of rigid and Flexible Pavements
Sakthivel M
 
New Microsoft Office Word Documentfrf.docx
New Microsoft Office Word Documentfrf.docxNew Microsoft Office Word Documentfrf.docx
New Microsoft Office Word Documentfrf.docx
misheetasah
 
Flow Chart Proses Bisnis prosscesss.docx
Flow Chart Proses Bisnis prosscesss.docxFlow Chart Proses Bisnis prosscesss.docx
Flow Chart Proses Bisnis prosscesss.docx
rifka575530
 
3. What is the principles of Teamwork_Module_V1.0.ppt
3. What is the principles of Teamwork_Module_V1.0.ppt3. What is the principles of Teamwork_Module_V1.0.ppt
3. What is the principles of Teamwork_Module_V1.0.ppt
engaash9
 
Artificial Power 2025 raport krajobrazowy
Artificial Power 2025 raport krajobrazowyArtificial Power 2025 raport krajobrazowy
Artificial Power 2025 raport krajobrazowy
dominikamizerska1
 
Rigor, ethics, wellbeing and resilience in the ICT doctoral journey
Rigor, ethics, wellbeing and resilience in the ICT doctoral journeyRigor, ethics, wellbeing and resilience in the ICT doctoral journey
Rigor, ethics, wellbeing and resilience in the ICT doctoral journey
Yannis
 
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
djiceramil
 
Montreal Dreamin' 25 - Introduction to the MuleSoft AI Chain (MAC) Project
Montreal Dreamin' 25 - Introduction to the MuleSoft AI Chain (MAC) ProjectMontreal Dreamin' 25 - Introduction to the MuleSoft AI Chain (MAC) Project
Montreal Dreamin' 25 - Introduction to the MuleSoft AI Chain (MAC) Project
Alexandra N. Martinez
 
FINAL 2013 Module 20 Corrosion Control and Sequestering PPT Slides.pptx
FINAL 2013 Module 20 Corrosion Control and Sequestering PPT Slides.pptxFINAL 2013 Module 20 Corrosion Control and Sequestering PPT Slides.pptx
FINAL 2013 Module 20 Corrosion Control and Sequestering PPT Slides.pptx
kippcam
 
The first edition of the AIAG-VDA FMEA.pptx
The first edition of the AIAG-VDA FMEA.pptxThe first edition of the AIAG-VDA FMEA.pptx
The first edition of the AIAG-VDA FMEA.pptx
Mayank Mathur
 
362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf
362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf
362 Alec Data Center Solutions-Slysium Data Center-AUH-ABB Furse.pdf
djiceramil
 
operationg systemsdocumentmemorymanagement
operationg systemsdocumentmemorymanagementoperationg systemsdocumentmemorymanagement
operationg systemsdocumentmemorymanagement
SNIGDHAAPPANABHOTLA
 

pg / shardman: шардинг в PostgreSQL на основе postgres / fdw, pg / pathman и логической репликации / Арсений Шер, Стас Кельвич (Postgres Professional)

  • 1. pg_shardman: PostgreSQL sharding via postgres_fdw, pg_pathman and logical replication. Arseny Sher, Stas Kelvich Postgres Professional
  • 2. Read and write scalability High availability ACID transactions What people typically expect from the cluster 2
  • 4. Informal statement: it is impossible to implement a read/write data object that provides all three properties. Consistency in CAP means linearizability wow, so strict Availability in CAP means that any node must give non-error answer to every query. ... but execution can take arbitrary time P in CAP means that the system continues operation after network failure And in real life, we always want the system to continue operation after network failure CAP theorem: common myths 4
  • 5. This combination of availability and consistency over the wide area is generally considered impossible due to the CAP Theorem. We show how Spanner achieves this combination and why it is consistent with CAP. Eric Brewer. Spanner, TrueTime & The CAP Theorem. February 14, 2017 CAP theorem: conclusions 5
  • 6. We aim for Write (and read) horizontal scalability Mainly OLTP workload with occasional analytical queries Decent transactions pg_shardman is PG 10 extension, PostgreSQL license, available at GitHub Some features require patched Postgres pg_shardman 6
  • 7. pg_shardman is a compilation of several technologies. Scalability: hash-sharding via partitioning and fdw HA: logical replication ACID: 2PC + distributed snapshot manager pg_shardman foundations 7
  • 8. Let’s go up from partitioning. Because it’s like sharding, but inside one node. Partitioning benefits Sequential access to single (or a few) partitions instead of random access to huge table Effective cache usage when most frequently used data located in several partitions ... Sharding 8
  • 9. 9.6 and below: Range and list partitioning, complex manual management Not efficient New declarative partitioning in 10: + Range and list partitioning with handy DDL - No insertions to foreign partitions, no triggers on parent tables - Updates moving tuples between partitions are not supported pg_pathman extension: Hash and range partitioning Planning and execution optimizations FDW support Partitioning in PostgreSQL 9
  • 11. FDW (foreign data wrappers) mechanism in PG gives access to external sources of data. postgres_fdw extension allows querying one PG instance from another. Going beyond one node: FDW 11
  • 12. Since 9.6 postgres_fdw can push-down joins. Since 10 postgres_fdw can push-down aggregates and more kinds of joins. explain (analyze, costs off) select count(*) from remote.customer group by country_code; QUERY PLAN -------------------------------------------------------------- Foreign Scan (actual time=353.786..353.896 rows=100 loops=1) Relations: Aggregate on (remote.customer) postgres_fdw optimizations 12
  • 13. Currently parallel foreign scans are not supported :( ... and limitations 13
  • 14. partitioning + postgres_fdw => sharding 14
  • 15. partitioning + postgres_fdw => sharding 15
  • 16. pg_shardman supports only distribution by hash It splits the load evenly Currently it is impossible to change number of shards, it should be chosen beforehand wisely Too little shards will balance poorly after of nodes addition/removal Too many shards bring overhead, especially for replication ~10 shards per node looks like adequate baseline Another common approach for resharding is consistent hashing Data distribution schemas 16
  • 17. Possible schemas of replication per-node, using streaming (physical) replication of PostgreSQL High availability 17
  • 18. 1 1 Taken from citus docs Per-node replication in Citus MX 18
  • 19. per-node, using streaming (physical) replication of PostgreSQL Requires 2x nodes, or 2х PG instances per node. Possible schemas of replication 19
  • 20. per-node, using streaming (physical) replication of PostgreSQL Requires 2x nodes, or 2х PG instances per node. per-shard, using logical replication Possible schemas of replication 20
  • 21. Logical replication – new in PostgreSQL 10 21
  • 22. Logical replication – new in PostgreSQL 10 22
  • 24. Synchronous replication: We don’t lose transactions reported as committed Write it blocked if replica doesn’t respond Slower Currently we can reliably failover only if we have 1 replica per shard Asynchronous replication: Last committed transactions might be lost Writes don’t block Faster Synchronous, asynchronous replication and availability 24
  • 25. Node addition with seamless rebalance 25
  • 27. We designate one special node ’sharlord’. It holds tables with metadata. Metadata can be synchronously replicated somewhere to change shardlord in case of failure. Currently shardlord can’t hold usual data itself. How to manage this zoo 27
  • 29. select shardman.add_node(’port=5433’); select shardman.add_node(’port=5434’); create table pgbench_accounts (aid int not null, bid int, abalance int, filler char(84)); select shardman.create_hash_partitions(’pgbench_accounts’,’aid’, 30, 1); Example 29
  • 30. [local]:5432 ars@ars:5434=# table shardman.partitions; part_name | node_id | relation ---------------------+---------+------------------ pgbench_accounts_0 | 1 | pgbench_accounts pgbench_accounts_1 | 2 | pgbench_accounts pgbench_accounts_2 | 3 | pgbench_accounts ... Example 30
  • 31. [local]:5432 ars@ars:5434=# table shardman.replicas; part_name | node_id | relation ---------------------+---------+------------------ pgbench_accounts_0 | 2 | pgbench_accounts pgbench_accounts_1 | 3 | pgbench_accounts pgbench_accounts_2 | 1 | pgbench_accounts ... Example 31
  • 32. Distributed transactions: Distributed atomicity Distributed isolation Profit! (distributed) Transactions in shardman 32
  • 33. All reliable distributed systems are alike each unreliable is unreliable in its own way. Kyle Kingsbury and Leo Tolstoy. Transactions in shardman 33
  • 34. Distributed transactions: Atomicity: 2PC Isolation: Clock-SI Transactions in shardman 34
  • 36. Two-phase commit is the anti-availability protocol. P. Helland. ACM Queue, Vol. 14, Issue 2, March-April 2016. Transactions in shardman: 2PC 36
  • 41. So what we can do about it? Make 2PC fail-recovery tolerant: X3PC, Paxos Commit Back-up partitions! Transactions in shardman: 2PC 41
  • 43. Spanner mitigates this by having each member be a Paxos group, thus ensuring each 2PC “member” is highly available even if some of its Paxos participants are down. Eric Brewer. Transactions in shardman: 2PC 43
  • 44. Profit? Not yet! Transactions in shardman: isolation 44
  • 46. postgres_fdw.use_twophase = on BEGIN; UPDATE holders SET horns -= 1 WHERE holders.id = $id1; UPDATE holders SET horns += 1 WHERE holders.id = $id2; COMMIT; SELECT sum(horns_count) FROM holders; -> 1 -> -2 -> 0 Transactions in shardman: isolation 46
  • 47. MVCC in two sentences: UPDATE/DELETE create new tuple version, without in-place override Each tx gets current database version at start (xid, csn,timestamp) and able to see only appropriate versions. acc1 ver 10: {1, 0} ver 20: {1, 2} ver 30: {1, 4} ––––– snapshot = 34 ––––– ver 40: {1, 2} Transactions in shardman: isolation 47
  • 49. Do some serious stuff Transactions in shardman: isolation 49
  • 52. Do some serious web scale stuff Transactions in shardman: isolation 52
  • 54. Transactions in shardman: Clock Skew 54
  • 55. Clock-SI slightly changes visibility rules: version = timestamp Visibility’: Waits if tuple came from future. (Do not allow time-travel paradoxes!) Visibility”: Waits if tuple already prepared(P) but not yet commited(C). Commit’: Receives local versions from partitions on Prepare and Commits with maximal version. Transactions in shardman: isolation 55
  • 56. 0 2 4 6 8 10 12 14 nodes 0 10000 20000 30000 40000 50000 TPS pgbench -N on ec2 c3.2xlarge, client is oblivious about keys distribution single node, no shardman pg_shardman, no replication pg_shardman, redundancy 1, async replication Some benchmarks 56
  • 57. pg_shardman with docs is available at github.com/postgrespro/pg_shardman Report issues on GitHub Some features require patched postgres github.com/postgrespro/postgres_cluster/tree/pg_shardman 2PC and distributed snapshot manager COPY FROM to sharded tables additionaly needs patched pg_pathman We appreciate feedback! 57