SlideShare a Scribd company logo
2015.secon.ru, Пенза
PostgreSQL 9.4: NoSQL on ACID
Oleg Bartunov, Teodor Sigaev
• Locale support
• Extendability (indexing)
• GiST (KNN), GIN, SP-GiST
• Full Text Search (FTS)
• Jsonb, VODKA
• Extensions:
• intarray
• pg_trgm
• ltree
• hstore
• plantuner
https://www.facebook.com/oleg.bartunov
obartunov@gmail.com, teodor@sigaev.ru
https://www.facebook.com/groups/postgresql/
Alexander Korotkov
aekorotkov@gmail.com
●
Indexed regexp search
●
GIN compression & fast scan
●
Fast GiST build
●
Range types indexing
●
Split for GiST
●
Indexing for jsonb
●
jsquery
●
Generic WAL + create am (WIP)
Agenda
• The problem
• Hstore
• Introduction to jsonb indexing
• Jsquery - Jsonb Query Language
• Exercises on jsonb GIN opclasses with Jsquery support
• VODKA access method
The problem
• The world of data and applications is changing
• BIG DATA (Volume of data,Velocity of data in-out, Variety of data)
• Web applications are service-oriented
• Service itself can aggregate data, check consistency of data
• High concurrency, simple queries
• Simple database (key-value) is ok
• Eventual consistency is ok, no ACID overhead
• Application needs faster releases
• NoSQL databases match all of these — scalable, efficient, fault-tolerant,
no rigid schema, ready to accept any data.
NoSQL (концептуальные предпосылки)
• Реляционные СУБД — интеграционные
• Все приложения общаются через СУБД
• SQL — универсальный язык работы с данными
• Все изменения в СУБД доступны всем
• Изменения схемы очень затратны, медл. релизы
• Рассчитаны на интерактивную работу
• Интересны агрегаты, а не сами данные, нужен SQL
• SQL отслеживает транзакционность, ограничения целостности... вместо человека
NoSQL (концептуальные предпосылки)
• Сервисная архитектура изменила подход к СУБД
• Приложение состоит из сервисов, SQL->HTTP
• Сервисам не нужна одна монолитная СУБД
• Часто достаточно простых key-value СУБД
• Схема меняется «на ходу», быстрые релизы
• ACID → BASE
• Сервисы — это программы, которые могут сами заниматься агрегированием
• Сервисы могут сами следить за целостностью данных
• Много данных, аналитика, большое кол-во одновременных запросов
• Распределенность - кластеры дешевых shared-nothing машин
• NoSQL —горизонтальная масштабируемость и производительность
PostgreSQL 9.4: NoSQL on ACID
NoSQL
• Key-value databases
• Ordered k-v for ranges support
• Column family (column-oriented) stores
• Big Table — value has structure:
• column families, columns, and timestamped versions (maps-of maps-of maps)
• Document databases
• Value has arbitrary structure
• Graph databases — evolution od ordered-kv
NoSQL databases (wikipedia) …+++
Document store
* Lotus Notes
* CouchDB
* MongoDB
* Apache Jackrabbit
* Colayer
* XML databases
o MarkLogic Server
o eXist
Graph
* Neo4j
* AllegroGraph
Tabular
* BigTable
* Mnesia
* Hbase
* Hypertable
Key/value store on disk
* Tuple space
* Memcachedb
* Redis
* SimpleDB
* flare
* Tokyo Cabinet
* BigTable
Key/value cache in RAM
* memcached
* Velocity
* Redis
Eventually-consistent key-value store
* Dynamo
* Cassandra
* Project Voldemort
Ordered key-value store
* NMDB
* Luxio
* Memcachedb
* Berkeley DB
Object database
* Db4o
* InterSystems Caché
* Objectivity/DB
* ZODB
PostgreSQL 9.4: NoSQL on ACID
CAP теорема: Наш вариант
The problem
• What if application needs ACID and flexibility of NoSQL ?
• Relational databases work with data with schema known in advance
• One of the major compaints to relational databases is rigid schema.
It's not easy to change schema online (ALTER TABLE … ADD COLUMN...)
• Application should wait for schema changing, infrequent releases
• NoSQL uses json format, why not have it in relational database ?
JSON in PostgreSQL
This is the challenge !
Challenge to PostgreSQL !
• Full support of semi-stuctured data in PostgreSQL
• Storage
• Operators and functions
• Efficiency (fast access to storage, indexes)
• Integration with CORE (planner, optimiser)
• Actually, PostgreSQL is schema-less database since 2003 — hstore, one
of the most popular extension !
Google insights about hstore
Introduction to Hstore
id col1 col2 col3 col4 col5 A lot of columns
key1, …. keyN
●
The problem:
●
Total number of columns may be very large
●
Only several fields are searchable ( used in WHERE)
●
Other columns are used only to output
●
These columns may not known in advance
●
Solution
●
New data type (hstore), which consists of (key,value) pairs (a'la perl hash)
Introduction to Hstore
id col1 col2 col3 col4 col5 Hstore
key1=>val1, key2=>val2,.....
●
Easy to add key=>value pair
●
No need change schema, just change hstore.
●
Schema-less PostgreSQL in 2003 !
Introduction to hstore
• Hstore — key/value binary storage (inspired by perl hash)
'a=>1, b=>2'::hstore
• Key, value — strings
• Get value for a key: hstore -> text
• Operators with indexing support (GiST, GIN)
Check for key: hstore ? text
Contains: hstore @> hstore
• check documentations for more
• Functions for hstore manipulations (akeys, avals, skeys, svals, each,......)
• Hstore provides PostgreSQL schema-less feature !
• Faster releases, no problem with schema upgrade
Hstore binary storage
Npairs:31
Varlena
header
New version flag:1
Key endpos:
31
Val endpos:
31
ISNULL:1
key... val ...
Start End
First key 0 HEntry[0]
i-th key HEntry[i*2 - 1] HEntry[i*2]
i-th value HEntry[i*2] HEntry[i*2 + 1]
String arrayHEntry array
Pairs are lexicographically ordered by key
Hstore limitations
• Levels: unlimited
• Number of elements in array: 2^31
• Number of pairs in hash: 2^31
• Length of string: 2^31 bytes
2^31 bytes = 2 GB
History of hstore development
• May 16, 2003 — first version of hstore
History of hstore development
• May 16, 2003 - first (unpublished) version of hstore for PostgreSQL
7.3
• Dec, 05, 2006 - hstore is a part of PostgreSQL 8.2
(thanks, Hubert Depesz Lubaczewski!)
• May 23, 2007 - GIN index for hstore, PostgreSQL 8.3
• Sep, 20, 2010 - Andrew Gierth improved hstore, PostgreSQL 9.0
Inverted Index
Btree
Btree
Inverted Index
QUERY: compensation accelerometers
INDEX: accelerometers compensation
5,10,25,28,3030,36,58,59,61,73,74 3030,68
RESULT: 3030
GIN improvements
• GIN in 9.4 is greatly improved
• Posting lists compression (varbyte encoding) — smaller indexes
• 9.3: always 6 bytes (4 bytes blockNumber , 2 bytes offset): 90 bytes
(0,8) (0,14) (0,17) (0,22) (0,26) (0,33) (0,34) (0,35) (0,45) (0,47) (0,48) (1,3) (1,4)
(1,6) (1,8)
• 9.4: 1-6 bytes per each item, deltas from previous item: 21 bytes
(0,8) +6 +3 +5 +4 +7 +1 +1 +10 +2 +1 +2051 +1+2 +2
SELECT g % 10 FROM generate_series(1,10000000) g; 11Mb vs 58Mb
• Fast scan of posting lists - «rare & frequent» queries much faster
• 9.3: read posting lists for «rare» and «frequent» and join them
Time(frequent & rare) ~ Time(frequent)
• 9.4: start from posting list for «rare» and skip «frequent» list if no match
Time(frequent & rare) ~ Time(rare)
Hstore is DEAD ? No !
• How hstore benefits by GIN improvement in 9.4 ?
GIN stands for Generalized Inverted Index, so virtually all data types, which use
GIN, get benefit !
• Default hstore GIN opclass considers keys and values separately
• Keys are «frequent», value are «rare»
• Contains query: hstore @> 'key=>value' improved a lot for «rare» values
• Index size is smaller, less io
Hstore 9.3 vs 9.4
Total: 7240858 geo records:
"fcode"=>"RFSU",
"point"=>"(8.85,112.53333)",
"fclass"=>"U",
"asciiname"=>"London Reefs",
"elevation"=>NULL,
"geonameid"=>"1879967",
"population"=>"0"
Query:
SELECT count(*) FROM geo
WHERE geo @> 'fcode=>STM';
gin_hstore_ops: index keys and values
gin_hstore_bytea_ops = gin_hstore_ops, no collation comparison
gin_hstore_hash_ops: index hash(key.value)
Hstore 9.3 vs 9.4
|-------------------------+-------+----------+-------+---------|
| Name | Type | Owner | Table | Size |
|-------------------------+-------+----------+-------+---------|
| geo | table | postgres | | 1352 MB |
| geo_hstore_bytea_ops | index | postgres | geo | 1680 MB |
| geo_hstore_hash_ops_idx | index | postgres | geo | 1073 MB |
|-------------------------+-------+----------+-------+---------|
|-------------------------+-------+----------+-------+---------|
| Name | Type | Owner | Table | Size |
|-------------------------+-------+----------+-------+---------|
| geo | table | postgres | | 1352 MB |
| geo_hstore_bytea_ops | index | postgres | geo | 1296 MB |
| geo_hstore_hash_ops_idx | index | postgres | geo | 925 MB |
|-------------------------+-------+----------+-------+---------|
9.4
9.3
CREATE OPERATOR CLASS gin_hstore_bytea_ops FOR TYPE hstore
….....................................................................................
FUNCTION 1 byteacmp(bytea,bytea),
….....................................................................................
STORAGE bytea;
CREATE INDEX: 239 s Much faster comparison (no collation)
CREATE OPERATOR CLASS gin_hstore_ops FOR TYPE hstore
….....................................................................................
FUNCTION 1 bttextcmp(text,text),,
….....................................................................................
STORAGE text;
CREATE INDEX: 2870 s
Hstore 9.3 vs 9.4
SUMMARY:
●
9.4 GIN posting list compression:
indexes are smaller
●
9.4 GIN is smart regarding 'freq & rare' queries:
time (freq & rare) ~ time (rare) instead of
time (freq & rare) ~ time (freq)
●
gin_hstore_hash_ops is good on 9.3 & 9.4 and
faster default gin opclass
●
Use gin_hstore_bytea_ops instead of default
gin_hstore_ops — much faster create index
Get hstore_ops from:
from https://github.com/akorotkov/hstore_ops
Introduction to hstore
• Hstore benefits
• In provides a flexible model for storing a semi-structured data in relational
database
• hstore has binary storage and rich set of operators and functions, indexes
• Hstore drawbacks
• Too simple model !
Hstore key-value model doesn't supports tree-like structures as json
(introduced in 2006, 3 years after hstore)
• Json — popular and standartized (ECMA-404 The JSON Data
Interchange Standard, JSON RFC-7159)
• Json — PostgreSQL 9.2, textual storage
Hstore vs Json
SELECT sum((v->'a')::text::int) FROM json_test;
851.012 ms
SELECT sum((v->'a')::int) FROM hstore_test;
330.027 ms
• hstore is faster than json even on simple data
CREATE TABLE hstore_test AS (SELECT
'a=>1, b=>2, c=>3, d=>4, e=>5'::hstore AS v
FROM generate_series(1,1000000));
CREATE TABLE json_test AS (SELECT
'{"a":1, "b":2, "c":3, "d":4, "e":5}'::json AS v
FROM generate_series(1,1000000));
Hstore vs Json
• PostgreSQL already has json since 9.2, which supports document-
based model, but
• It's slow, since it has no binary representation and needs to be parsed every
time
• Hstore is fast, thanks to binary representation and index support
• It's possible to convert hstore to json and vice versa, but current hstore is
limited to key-value
• Need hstore with document-based model. Share it's
binary representation with json !
Nested hstore
Nested hstore & jsonb
• Nested hstore at PGCon-2013, Ottawa, Canada ( May 24) — thanks
Engine Yard for support !
One step forward true json data type.Nested hstore with arrays support
• Binary storage for nested data at PGCon Europe — 2013, Dublin, Ireland
(Oct 29)
Binary storage for nested data structuresand application to hstore data type
• November, 2013 — binary storage was reworked, nested hstore and
jsonb share the same storage. Andrew Dunstan joined the project.
• January, 2014 - binary storage moved to core
Nested hstore & jsonb
• Feb-Mar, 2014 - Peter Geoghegan joined the project, nested hstore was
cancelled in favour to jsonb (Nested hstore patch for 9.3).
• Mar 23, 2014 Andrew Dunstan committed jsonb to 9.4 branch !
pgsql: Introduce jsonb, a structured format for storing json.
Introduce jsonb, a structured format for storing json.
The new format accepts exactly the same data as the json type. However, it is
stored in a format that does not require reparsing the orgiginal text in order
to process it, making it much more suitable for indexing and other operations.
Insignificant whitespace is discarded, and the order of object keys is not
preserved. Neither are duplicate object keys kept - the later value for a given
key is the only one stored.
Jsonb vs Json
SELECT '{"c":0, "a":2,"a":1}'::json, '{"c":0, "a":2,"a":1}'::jsonb;
json | jsonb
-----------------------+------------------
{"c":0, "a":2,"a":1} | {"a": 1, "c": 0}
(1 row)
• json: textual storage «as is»
• jsonb: no whitespaces
• jsonb: no duplicate keys, last key win
• jsonb: keys are sorted
Jsonb vs Json
• Data
• 1,252,973 Delicious bookmarks
• Server
• MBA, 8 GB RAM, 256 GB SSD
• Test
• Input performance - copy data to table
• Access performance - get value by key
• Search performance contains @> operator
Jsonb vs Json
• Data
• 1,252,973 bookmarks from Delicious in json format (js)
• The same bookmarks in jsonb format (jb)
• The same bookmarks as text (tx)
=# dt+
List of relations
Schema | Name | Type | Owner | Size | Description
--------+------+-------+----------+---------+-------------
public | jb | table | postgres | 1374 MB | overhead is < 4%
public | js | table | postgres | 1322 MB |
public | tx | table | postgres | 1322 MB |
Jsonb vs Json
• Input performance (parser)
Copy data (1,252,973 rows) as text, json,jsonb
copy tt from '/path/to/test.dump'
Text: 34 s - as is
Json: 37 s - json validation
Jsonb: 43 s - json validation, binary storage
Jsonb vs Json (binary storage)
• Access performance — get value by key
• Base: SELECT js FROM js;
• Jsonb: SELECT j->>'updated' FROM jb;
• Json: SELECT j->>'updated' FROM js;
Base: 0.6 s
Jsonb: 1 s 0.4
Json: 9.6 s 9
Jsonb ~ 20X faster Json
Jsonb vs Json
EXPLAIN ANALYZE SELECt count(*) FROM js WHERE js #>>'{tags,0,term}' = 'NYC';
QUERY PLAN
----------------------------------------------------------------------------
Aggregate (cost=187812.38..187812.39 rows=1 width=0)
(actual time=10054.602..10054.602 rows=1 loops=1)
-> Seq Scan on js (cost=0.00..187796.88 rows=6201 width=0)
(actual time=0.030..10054.426 rows=123 loops=1)
Filter: ((js #>> '{tags,0,term}'::text[]) = 'NYC'::text)
Rows Removed by Filter: 1252850
Planning time: 0.078 ms
Execution runtime: 10054.635 ms
(6 rows)
Json: no contains @> operator,
search first array element
Jsonb vs Json (binary storage)
EXPLAIN ANALYZE SELECT count(*) FROM jb WHERE jb @> '{"tags":[{"term":"NYC"}]}'::jsonb;
QUERY PLAN
---------------------------------------------------------------------------------------
Aggregate (cost=191521.30..191521.31 rows=1 width=0)
(actual time=1263.201..1263.201 rows=1 loops=1)
-> Seq Scan on jb (cost=0.00..191518.16 rows=1253 width=0)
(actual time=0.007..1263.065 rows=285 loops=1)
Filter: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
Rows Removed by Filter: 1252688
Planning time: 0.065 ms
Execution runtime: 1263.225 ms Execution runtime: 10054.635 ms
(6 rows)
Jsonb ~ 10X faster Json
Jsonb vs Json (GIN: key && value)
EXPLAIN ANALYZE SELECT count(*) FROM jb WHERE jb @> '{"tags":[{"term":"NYC"}]}'::jsonb;
QUERY PLAN
---------------------------------------------------------------------------------------
Aggregate (cost=4772.72..4772.73 rows=1 width=0)
(actual time=8.486..8.486 rows=1 loops=1)
-> Bitmap Heap Scan on jb (cost=73.71..4769.59 rows=1253 width=0)
(actual time=8.049..8.462 rows=285 loops=1)
Recheck Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
Heap Blocks: exact=285
-> Bitmap Index Scan on gin_jb_idx (cost=0.00..73.40 rows=1253 width=0)
(actual time=8.014..8.014 rows=285 loops=1)
Index Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
Planning time: 0.115 ms
Execution runtime: 8.515 ms Execution runtime: 10054.635 ms
(8 rows)
CREATE INDEX gin_jb_idx ON jb USING gin(jb);
Jsonb ~ 150X faster Json
Jsonb vs Json (GIN: hash path.value)
EXPLAIN ANALYZE SELECT count(*) FROM jb WHERE jb @> '{"tags":[{"term":"NYC"}]}'::jsonb;
QUERY PLAN
---------------------------------------------------------------------------------------
Aggregate (cost=4732.72..4732.73 rows=1 width=0)
(actual time=0.644..0.644 rows=1 loops=1)
-> Bitmap Heap Scan on jb (cost=33.71..4729.59 rows=1253 width=0)
(actual time=0.102..0.620 rows=285 loops=1)
Recheck Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
Heap Blocks: exact=285
-> Bitmap Index Scan on gin_jb_path_idx
(cost=0.00..33.40 rows=1253 width=0) (actual time=0.062..0.062 rows=285 loops=1)
Index Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
Planning time: 0.056 ms
Execution runtime: 0.668 ms Execution runtime: 10054.635 ms
(8 rows)
CREATE INDEX gin_jb_path_idx ON jb USING gin(jb jsonb_path_ops);
Jsonb ~ 1800X faster Json
PostgreSQL 9.4 vs Mongo 2.6.0
• Operator contains @>
• json : 10 s seqscan
• jsonb : 8.5 ms GIN jsonb_ops
• jsonb : 0.7 ms GIN jsonb_path_ops
• mongo : 1.0 ms btree index
• Index size
• jsonb_ops - 636 Mb (no compression, 815Mb)
jsonb_path_ops - 295 Mb
• jsonb_path_ops (tags) - 44 Mb USING gin((jb->'tags') jsonb_path_ops
• mongo (tags) - 387 Mb
mongo (tags.term) - 100 Mb
•Table size
•postgres : 1.3Gb
•mongo : 1.8Gb
•Input performance:
• Text : 34 s
• Json : 37 s
• Jsonb : 43 s
• mongo : 13 m
Что сейчас может Jsonb ?
• Contains operators - jsonb @> jsonb, jsonb <@ jsonb (GIN indexes)
jb @> '{"tags":[{"term":"NYC"}]}'::jsonb
Keys should be specified from root
●
Equivalence operator — jsonb = jsonb (GIN indexes)
• Exists operators — jsonb ? text, jsonb ?! text[], jsonb ?& text[] (GIN indexes)
jb WHERE jb ?| '{tags,links}'
Only root keys supported
• Operators on jsonb parts (functional indexes)
SELECT ('{"a": {"b":5}}'::jsonb -> 'a'->>'b')::int > 2;
CREATE INDEX ….USING BTREE ( (jb->'a'->>'b')::int);
Very cumbersome, too many functional indexes
Найти что-нибудь красное
• Table "public.js_test"
Column | Type | Modifiers
--------+---------+-----------
id | integer | not null
value | jsonb |
select * from js_test;
id | value
----+-----------------------------------------------------------------------
1 | [1, "a", true, {"b": "c", "f": false}]
2 | {"a": "blue", "t": [{"color": "red", "width": 100}]}
3 | [{"color": "red", "width": 100}]
4 | {"color": "red", "width": 100}
5 | {"a": "blue", "t": [{"color": "red", "width": 100}], "color": "red"}
6 | {"a": "blue", "t": [{"color": "blue", "width": 100}], "color": "red"}
7 | {"a": "blue", "t": [{"color": "blue", "width": 100}], "colr": "red"}
8 | {"a": "blue", "t": [{"color": "green", "width": 100}]}
9 | {"color": "green", "value": "red", "width": 100}
(9 rows)
Найти что-нибудь красное
• WITH RECURSIVE t(id, value) AS ( SELECT * FROM
js_test
UNION ALL
(
SELECT
t.id,
COALESCE(kv.value, e.value) AS value
FROM
t
LEFT JOIN LATERAL
jsonb_each(
CASE WHEN jsonb_typeof(t.value) =
'object' THEN t.value
ELSE NULL END) kv ON true
LEFT JOIN LATERAL
jsonb_array_elements(
CASE WHEN
jsonb_typeof(t.value) = 'array' THEN t.value
ELSE NULL END) e ON true
WHERE
kv.value IS NOT NULL OR e.value IS
NOT NULL
)
)
SELECT
js_test.*
FROM
(SELECT id FROM t WHERE value @> '{"color":
"red"}' GROUP BY id) x
JOIN js_test ON js_test.id = x.id;
• Весьма непростое решение !
Что хочется ?
• Need Jsonb query language
• Simple and effective way to search in arrays (and other iterative
searches)
• More comparison operators (сейчас только =)
• Types support
• Schema support (constraints on keys, values)
• Indexes support
Что хочется ?
• Need Jsonb query language
• Simple and effective way to search in arrays (and other iterative
searches)
• More comparison operators (сейчас только =)
• Types support
• Schema support (constraints on keys, values)
• Indexes support
• Introduce Jsquery - textual data type and @@ match operator
jsonb @@ jsquery
PGCon-2014, Май, Оттава
Jsonb query language (Jsquery)
value_list
::= scalar_value
| value_list ',' scalar_value
array ::= '[' value_list ']'
scalar_value
::= null
| STRING
| true
| false
| NUMERIC
| OBJECT
…....
Expr ::= path value_expr
| path HINT value_expr
| NOT expr
| NOT HINT value_expr
| NOT value_expr
| path '(' expr ')'
| '(' expr ')'
| expr AND expr
| expr OR expr
path ::= key
| path '.' key_any
| NOT '.' key_any
key ::= '*'
| '#'
| '%'
| '$'
| STRING
….....
key_any ::= key
| NOT
value_expr
::= '=' scalar_value
| IN '(' value_list ')'
| '=' array
| '=' '*'
| '<' NUMERIC
| '<' '=' NUMERIC
| '>' NUMERIC
| '>' '=' NUMERIC
| '@' '>' array
| '<' '@' array
| '&' '&' array
| IS ARRAY
| IS NUMERIC
| IS OBJECT
| IS STRING
| IS BOOLEAN
Jsonb query language (Jsquery)
• # - any element array
• % - any key
• * - anything
• $ - current element
• Use "double quotes" for key !
SELECT '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b.# = 2';
SELECT '{"a": {"b": [1,2,3]}}'::jsonb @@ '%.b.# = 2';
SELECT '{"a": {"b": [1,2,3]}}'::jsonb @@ '*.# = 2';
select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b.# ($ = 2 OR $ < 3)';
select 'a1."12222" < 111'::jsquery;
path ::= key
| path '.' key_any
| NOT '.' key_any
key ::= '*'
| '#'
| '%'
| '$'
| STRING
….....
key_any ::= key
| NOT
Jsonb query language (Jsquery)
• Scalar
• Test for key existence
• Array overlap
• Array contains
• Array contained
select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b.# IN (1,2,5)';
select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b = *';
select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b && [1,2,5]';
select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b @> [1,2]';
select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b <@ [1,2,3,4,5]';
value_expr
::= '=' scalar_value
| IN '(' value_list ')'
| '=' array
| '=' '*'
| '<' NUMERIC
| '<' '=' NUMERIC
| '>' NUMERIC
| '>' '=' NUMERIC
| '@' '>' array
| '<' '@' array
| '&' '&' array
| IS ARRAY
| IS NUMERIC
| IS OBJECT
| IS STRING
| IS BOOLEAN
Jsonb query language (Jsquery)
• Type checking
select '{"x": true}' @@ 'x IS boolean'::jsquery,
'{"x": 0.1}' @@ 'x IS numeric'::jsquery;
?column? | ?column?
----------+----------
t | t
IS BOOLEAN
IS NUMERIC
IS ARRAY
IS OBJECT
IS STRINGselect '{"a":{"a":1}}' @@ 'a IS object'::jsquery;
?column?
----------
t
select '{"a":["xxx"]}' @@ 'a IS array'::jsquery, '["xxx"]' @@ '$ IS array'::jsquery;
?column? | ?column?
----------+----------
t | t
Jsonb query language (Jsquery)
• How many products are similar to "B000089778" and have
product_sales_rank in range between 10000-20000 ?
• SQL
SELECT count(*) FROM jr WHERE (jr->>'product_sales_rank')::int > 10000
and (jr->> 'product_sales_rank')::int < 20000 and
….boring stuff
• Jsquery
SELECT count(*) FROM jr WHERE jr @@ ' similar_product_ids &&
["B000089778"] AND product_sales_rank( $ > 10000 AND $ < 20000)'
• Mongodb
db.reviews.find( { $and :[ {similar_product_ids: { $in ["B000089778"]}},
{product_sales_rank:{$gt:10000, $lt:20000}}] } ).count()
Найти что-нибудь красное
• WITH RECURSIVE t(id, value) AS ( SELECT * FROM
js_test
UNION ALL
(
SELECT
t.id,
COALESCE(kv.value, e.value) AS value
FROM
t
LEFT JOIN LATERAL
jsonb_each(
CASE WHEN jsonb_typeof(t.value) =
'object' THEN t.value
ELSE NULL END) kv ON true
LEFT JOIN LATERAL
jsonb_array_elements(
CASE WHEN
jsonb_typeof(t.value) = 'array' THEN t.value
ELSE NULL END) e ON true
WHERE
kv.value IS NOT NULL OR e.value IS
NOT NULL
)
)
SELECT
js_test.*
FROM
(SELECT id FROM t WHERE value @> '{"color":
"red"}' GROUP BY id) x
JOIN js_test ON js_test.id = x.id;
• Jsquery
SELECT * FROM js_test
WHERE
value @@ '*.color = "red"';
Еще пример
• SQL
SELECT * FROM js_test2 js
WHERE NOT EXISTS (
SELECT 1
FROM
jsonb_array_elements(js.value) el
WHERE EXISTS (
SELECT 1
FROM jsonb_each(el.value) kv
WHERE NOT
kv.value::text::numeric BETWEEN
0.0 AND 1.0));
• Jsquery
SELECT * FROM js_test2 js
WHERE '#:.%:($ >= 0 AND $ <= 1)';
Jsonb query language (Jsquery)
explain( analyze, buffers) select count(*) from jb where jb @> '{"tags":[{"term":"NYC"}]}'::jsonb;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------
Aggregate (cost=191517.30..191517.31 rows=1 width=0) (actual time=1039.422..1039.423 rows=1 loops=1)
Buffers: shared hit=97841 read=78011
-> Seq Scan on jb (cost=0.00..191514.16 rows=1253 width=0) (actual time=0.006..1039.310 rows=285 loops=1)
Filter: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb)
Rows Removed by Filter: 1252688
Buffers: shared hit=97841 read=78011
Planning time: 0.074 ms
Execution time: 1039.444 ms
explain( analyze,costs off) select count(*) from jb where jb @@ 'tags.#.term = "NYC"';
QUERY PLAN
--------------------------------------------------------------------
Aggregate (actual time=891.707..891.707 rows=1 loops=1)
-> Seq Scan on jb (actual time=0.010..891.553 rows=285 loops=1)
Filter: (jb @@ '"tags".#."term" = "NYC"'::jsquery)
Rows Removed by Filter: 1252688
Execution time: 891.745 ms
Jsquery (indexes)
• GIN opclasses with jsquery support
• jsonb_value_path_ops — use Bloom filtering for key matching
{"a":{"b":{"c":10}}} → 10.( bloom(a) or bloom(b) or bloom(c) )
• Good for key matching (wildcard support) , not good for range query
• jsonb_path_value_ops — hash path (like jsonb_path_ops)
{"a":{"b":{"c":10}}} → hash(a.b.c).10
• No wildcard support, no problem with ranges
List of relations
Schema | Name | Type | Owner | Table | Size | Description
--------+-------------------------+-------+----------+--------------+---------+-------------
public | jb | table | postgres | | 1374 MB |
public | jb_value_path_idx | index | postgres | jb | 306 MB |
public | jb_gin_idx | index | postgres | jb | 544 MB |
public | jb_path_value_idx | index | postgres | jb | 306 MB |
public | jb_path_idx | index | postgres | jb | 251 MB |
Jsquery (indexes)
explain( analyze,costs off) select count(*) from jb where jb @@ 'tags.#.term = "NYC"';
QUERY PLAN
-------------------------------------------------------------------------------------------------
Aggregate (actual time=0.609..0.609 rows=1 loops=1)
-> Bitmap Heap Scan on jb (actual time=0.115..0.580 rows=285 loops=1)
Recheck Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery)
Heap Blocks: exact=285
-> Bitmap Index Scan on jb_value_path_idx (actual time=0.073..0.073 rows=285 loops=1)
Index Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery)
Execution time: 0.634 ms
(7 rows)
Jsquery (indexes)
explain( analyze,costs off) select count(*) from jb where jb @@ '*.term = "NYC"';
QUERY PLAN
-------------------------------------------------------------------------------------------------
Aggregate (actual time=0.688..0.688 rows=1 loops=1)
-> Bitmap Heap Scan on jb (actual time=0.145..0.660 rows=285 loops=1)
Recheck Cond: (jb @@ '*."term" = "NYC"'::jsquery)
Heap Blocks: exact=285
-> Bitmap Index Scan on jb_value_path_idx (actual time=0.113..0.113 rows=285 loops=1)
Index Cond: (jb @@ '*."term" = "NYC"'::jsquery)
Execution time: 0.716 ms
(7 rows)
Citus dataset{
"customer_id": "AE22YDHSBFYIP",
"product_category": "Business & Investing",
"product_group": "Book",
"product_id": "1551803542",
"product_sales_rank": 11611,
"product_subcategory": "General",
"product_title": "Start and Run a Coffee Bar (Start & Run a)",
"review_date": {
"$date": 31363200000
},
"review_helpful_votes": 0,
"review_rating": 5,
"review_votes": 10,
"similar_product_ids": [
"0471136174",
"0910627312",
"047112138X",
"0786883561",
"0201570483"
]
}
• 3023162 reviews from Citus
1998-2000 years
• 1573 MB
Jsquery (indexes)
explain (analyze, costs off) select count(*) from jr where
jr @@ ' similar_product_ids && ["B000089778"]';
QUERY PLAN
------------------------------------------------------------------------------------------------
Aggregate (actual time=0.359..0.359 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=0.084..0.337 rows=185 loops=1)
Recheck Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery)
Heap Blocks: exact=107
-> Bitmap Index Scan on jr_path_value_idx (actual time=0.057..0.057 rows=185 loops=1)
Index Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery)
Execution time: 0.394 ms
(7 rows)
Jsquery (indexes)
explain (analyze, costs off) select count(*) from jr where
jr @@ ' similar_product_ids && ["B000089778"]
AND product_sales_rank( $ > 10000 AND $ < 20000)';
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------
Aggregate (actual time=126.149..126.149 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=126.057..126.143 rows=45 loops=1)
Recheck Cond: (jr @@ '("similar_product_ids" && ["B000089778"] &
"product_sales_rank"($ > 10000 & $ < 20000))'::jsquery)
Heap Blocks: exact=45
-> Bitmap Index Scan on jr_path_value_idx (actual time=126.029..126.029 rows=45 loops=1)
Index Cond: (jr @@ '("similar_product_ids" && ["B000089778"] &
"product_sales_rank"($ > 10000 & $ < 20000))'::jsquery)
Execution time: 129.309 ms !!! No statistics
(7 rows)
• No statistics, no planning :(
Not selective, better not use index!
MongoDB 2.6.0
db.reviews.find( { $and :[ {similar_product_ids: { $in:["B000089778"]}}, {product_sales_rank:{$gt:10000, $lt:20000}}] } )
.explain()
{
"n" : 45,
….................
"millis" : 7,
"indexBounds" : {
"similar_product_ids" : [ index size = 400 MB just for similar_product_ids !!!
[
"B000089778",
"B000089778"
]
]
},
}
Jsquery (indexes)
explain (analyze,costs off) select count(*) from jr where
jr @@ ' similar_product_ids && ["B000089778"]'
and (jr->>'product_sales_rank')::int>10000 and (jr->>'product_sales_rank')::int<20000;
-----------------------------------------------------------------------------------------------------------------------------------------
Aggregate (actual time=0.479..0.479 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=0.079..0.472 rows=45 loops=1)
Recheck Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery)
Filter: ((((jr ->> 'product_sales_rank'::text))::integer > 10000) AND
(((jr ->> 'product_sales_rank'::text))::integer < 20000))
Rows Removed by Filter: 140
Heap Blocks: exact=107
-> Bitmap Index Scan on jr_path_value_idx (actual time=0.041..0.041 rows=185 loops=1)
Index Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery)
Execution time: 0.506 ms Potentially, query could be faster Mongo !
(9 rows)
• If we rewrite query and use planner
Jsquery (optimiser) — NEW !
• Jsquery now has built-in optimiser for simple queries.
explain (analyze, costs off) select count(*) from jr where
jr @@ 'similar_product_ids && ["B000089778"]
AND product_sales_rank( $ > 10000 AND $ < 20000)'
------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (actual time=0.422..0.422 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=0.099..0.416 rows=45 loops=1)
Recheck Cond: (jr @@ '("similar_product_ids" && ["B000089778"] AND
"product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery)
Rows Removed by Index Recheck: 140
Heap Blocks: exact=107
-> Bitmap Index Scan on jr_path_value_idx (actual time=0.060..0.060 rows=185 loops=1)
Index Cond: (jr @@ '("similar_product_ids" && ["B000089778"] AND
"product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery)
Execution time: 0.480 ms vs 7 ms MongoDB !
Jsquery (optimiser) — NEW !
• Jsquery now has built-in optimiser for simple queries.
Analyze query tree and push non-selective parts to recheck (like filter)
Selectivity classes:
1) Equality (x = c)
2) Range (c1 < x < c2)
3) Inequality (c > c1)
4) Is (x is type)
5) Any (x = *)
SELECT gin_debug_query_path_value('similar_product_ids && ["B000089778"]
AND product_sales_rank( $ > 10000 AND $ < 20000)');
gin_debug_query_path_value
-------------------------------------------------
similar_product_ids.# = "B000089778" , entry 0 +
Jsquery (optimiser) — NEW !
• Jsquery optimiser pushes non-selective operators to recheck
explain (analyze, costs off) select count(*) from jr where
jr @@ 'similar_product_ids && ["B000089778"]
AND product_sales_rank( $ > 10000 AND $ < 20000)'
------------------------------------------------------------------------------------------------------------------------------------------
Aggregate (actual time=0.422..0.422 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=0.099..0.416 rows=45 loops=1)
Recheck Cond: (jr @@ '("similar_product_ids" && ["B000089778"] AND
"product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery)
Rows Removed by Index Recheck: 140
Heap Blocks: exact=107
-> Bitmap Index Scan on jr_path_value_idx (actual time=0.060..0.060 rows=185 loops=1)
Index Cond: (jr @@ '("similar_product_ids" && ["B000089778"] AND
"product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery)
Execution time: 0.480 ms
Jsquery (HINTING) — NEW !
• Jsquery now has HINTING ( if you don't like optimiser)!
explain (analyze, costs off) select count(*) from jr where jr @@ 'product_sales_rank > 10000'
----------------------------------------------------------------------------------------------------------
Aggregate (actual time=2507.410..2507.410 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=1118.814..2352.286 rows=2373140 loops=1)
Recheck Cond: (jr @@ '"product_sales_rank" > 10000'::jsquery)
Heap Blocks: exact=201209
-> Bitmap Index Scan on jr_path_value_idx (actual time=1052.483..1052.48
rows=2373140 loops=1)
Index Cond: (jr @@ '"product_sales_rank" > 10000'::jsquery)
Execution time: 2524.951 ms
• Better not to use index — HINT /* --noindex */
explain (analyze, costs off) select count(*) from jr where jr @@ 'product_sales_rank /*-- noindex */ > 10000';
----------------------------------------------------------------------------------
Aggregate (actual time=1376.262..1376.262 rows=1 loops=1)
-> Seq Scan on jr (actual time=0.013..1222.123 rows=2373140 loops=1)
Filter: (jr @@ '"product_sales_rank" /*-- noindex */ > 10000'::jsquery)
Rows Removed by Filter: 650022
Execution time: 1376.284 ms
Contrib/jsquery
• Jsquery index support is quite efficient ( 0.5 ms vs Mongo 7 ms ! )
• Future direction
• Make jsquery planner friendly
• Need statistics for jsonb
• Availability
• Jsquery + opclasses are available as extensions
• Grab it from https://github.com/akorotkov/jsquery (branch master) ,
we need your feedback !
PostgreSQL 9.4+
●
Open-source
●
Relational database
●
Strong support of json
Thanks for support
Что дальше ?
• SQL-level jsquery (расширяемость, статистика)
• VODKA access method ! VODKA Optimized Dendriform Keys Array
• Комбинация произвольных методов доступа
Better indexing ...
• GIN is a proven and effective index access method
• Need indexing for jsonb with operations on paths (no hash!) and values
• B-tree in entry tree is not good - length limit, no prefix compression
List of relations
Schema | Name | Type | Owner | Table | Size | Description
--------+-----------------------------+-------+----------+---------------+---------+-------------
public | jb | table | postgres | | 1374 MB |
public | jb_uniq_paths | table | postgres | | 912 MB |
public | jb_uniq_paths_btree_idx | index | postgres | jb_uniq_paths | 885 MB |text_pattern_ops
public | jb_uniq_paths_spgist_idx | index | postgres | jb_uniq_paths | 598 MB |now much less !
Better indexing ...
• Provide interface to change hardcoded B-tree in Entry tree
• Use spgist opclass for storing paths and values as is (strings hashed in values)
• We may go further - provide interface to change hardcoded B-tree in
posting tree
• GIS aware full text search !
• New index access method
CREATE INDEX … USING VODKA
GIN History
• Introduced at PostgreSQL Anniversary Meeting in Toronto, Jul 7-8, 2006
by Oleg Bartunov and Teodor Sigaev
GIN History
• Introduced at PostgreSQL Anniversary Meeting in Toronto, Jul 7-8, 2006
by Oleg Bartunov and Teodor Sigaev
• Supported by JFG Networks (France)
• «Gin stands for Generalized Inverted iNdex and should be considered as
a genie, not a drink.»
• Alexander Korotkov, Heikki Linnakangas have joined GIN++ development
in 2013
GIN History
TODO
----
Nearest future:
* Opclasses for all types (no programming, just many catalog changes).
Distant future:
* Replace B-tree of entries to something like GiST (VODKA ! 2014)
* Add multicolumn support
* Optimize insert operations (background index insertion)
• From GIN Readme, posted in -hackers, 2006-04-26
GIN index structure for jsonb
{
"product_group": "Book",
"product_sales_rank": 15000
},
{
"product_group": "Music",
"product_sales_rank": 25000
}
Vodka index structure for jsonb
{
"product_group": "Book",
"product_sales_rank": 15000
},
{
"product_group": "Music",
"product_sales_rank": 25000
}
CREATE INDEX … USING VODKA
set maintenance_work_mem = '1GB';
List of relations
Schema | Name | Type | Owner | Table | Size | Description
--------+--------------------+-------+----------+-------+---------+-------------
public | jb | table | postgres | | 1374 MB | 1252973 rows
public | jb_value_path_idx | index | postgres | jb | 306 MB | 98769.096
public | jb_gin_idx | index | postgres | jb | 544 MB | 129860.859
public | jb_path_value_idx | index | postgres | jb | 306 MB | 100560.313
public | jb_path_idx | index | postgres | jb | 251 MB | 68880.320
public | jb_vodka_idx | index | postgres | jb | 409 MB | 185362.865
public | jb_vodka_idx5 | index | postgres | jb | 325 MB | 174627.234 new spgist
(6 rows)
• Delicious bookmarks, mostly text data
CREATE INDEX … USING VODKA
select count(*) from jb where jb @@ 'tags.#.term = "NYC"';
-------------------------------------------------------------------------------------------
Aggregate (actual time=0.423..0.423 rows=1 loops=1)
-> Bitmap Heap Scan on jb (actual time=0.146..0.404 rows=285 loops=1)
Recheck Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery)
Heap Blocks: exact=285
-> Bitmap Index Scan on jb_vodka_idx (actual time=0.108..0.108 rows=285 loops=1)
Index Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery)
Execution time: 0.456 ms (0.634 ms, GIN jsonb_value_path_ops)
select count(*) from jb where jb @@ '*.term = "NYC"';
-------------------------------------------------------------------------------------------
Aggregate (actual time=0.495..0.495 rows=1 loops=1)
-> Bitmap Heap Scan on jb (actual time=0.245..0.474 rows=285 loops=1)
Recheck Cond: (jb @@ '*."term" = "NYC"'::jsquery)
Heap Blocks: exact=285
-> Bitmap Index Scan on jb_vodka_idx (actual time=0.214..0.214 rows=285 loops=1)
Index Cond: (jb @@ '*."term" = "NYC"'::jsquery)
Execution time: 0.526 ms (0.716 ms, GIN jsonb_path_value_ops)
CREATE INDEX … USING VODKA
set maintenance_work_mem = '1GB';
List of relations
Schema | Name | Type | Owner | Table | Size | Description
--------+--------------------+-------+----------+-------+---------+-------------
public | jr | table | postgres | | 1573 MB | 3023162 rows
public | jr_value_path_idx | index | postgres | jr | 196 MB | 79180.120
public | jr_gin_idx | index | postgres | jr | 235 MB | 111814.929
public | jr_path_value_idx | index | postgres | jr | 196 MB | 73369.713
public | jr_path_idx | index | postgres | jr | 180 MB | 48981.307
public | jr_vodka_idx3 | index | postgres | jr | 240 MB | 155714.777
public | jr_vodka_idx4 | index | postgres | jr | 211 MB | 169440.130 new spgist
(6 rows)
• CITUS data, text and numeric
CREATE INDEX … USING VODKA
explain (analyze, costs off) select count(*) from jr where jr @@ ' similar_product_ids && ["B000089778"]';
QUERY PLAN
-------------------------------------------------------------------------------------------
Aggregate (actual time=0.200..0.200 rows=1 loops=1)
-> Bitmap Heap Scan on jr (actual time=0.090..0.183 rows=185 loops=1)
Recheck Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery)
Heap Blocks: exact=107
-> Bitmap Index Scan on jr_vodka_idx (actual time=0.077..0.077 rows=185 loops=1)
Index Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery)
Execution time: 0.237 ms (0.394 ms, GIN jsonb_path_value_idx)
(7 rows)
There are can be different flavors of Vodka
Find twirled spaghetti
Spaghetti indexing ...
R-tree fails here — bounding box of each separate spaghetti is the same
Spaghetti indexing ...
R-tree fails here — bounding box of each separate spaghetti is the same
Spaghetti indexing ...
Ottawa downtown: York and George
streets
Idea: Use multiple boxes
Rtree Vodka
Summary
• contrib/jsquery for 9.4
• Jsquery - Jsonb Query Language
• Two GIN opclasses with jsquery support
• Grab it from https://github.com/akorotkov/jsquery (branch master)
• Prototype of VODKA access method
• Plans for improving indexing infrastructure
• This work was supported by
Another view on VODKA
• VODKA CONNECTING INDEXES
• composite index, which combines different access methods
• Nested search trees
postgrespro.ru
• Ищем инженеров:
• 24x7 поддержка
• Консалтинг & аудит
• Разработка админских
приложений
• Пакеты
• Ищем си-шников для работы
над постгресом:
• Неубиваемый и масштабируемый
кластер
• Хранилища (in-memory, column-
storage...)
VODKA Optimized Dendriform Keys Array

More Related Content

ODP
PostgreSQL Moscow Meetup - September 2014 - Oleg Bartunov and Alexander Korotkov
PDF
2015-12-05 Александр Коротков, Иван Панченко - Слабо-структурированные данные...
PDF
Webscale PostgreSQL - JSONB and Horizontal Scaling Strategies
PDF
On Beyond (PostgreSQL) Data Types
PDF
PG Day'14 Russia, Работа со слабо-структурированными данными в PostgreSQL, Ол...
PDF
NoSQL для PostgreSQL: Jsquery — язык запросов
PDF
Developing and Deploying Apps with the Postgres FDW
PDF
PostgreSQL and Sphinx pgcon 2013
PostgreSQL Moscow Meetup - September 2014 - Oleg Bartunov and Alexander Korotkov
2015-12-05 Александр Коротков, Иван Панченко - Слабо-структурированные данные...
Webscale PostgreSQL - JSONB and Horizontal Scaling Strategies
On Beyond (PostgreSQL) Data Types
PG Day'14 Russia, Работа со слабо-структурированными данными в PostgreSQL, Ол...
NoSQL для PostgreSQL: Jsquery — язык запросов
Developing and Deploying Apps with the Postgres FDW
PostgreSQL and Sphinx pgcon 2013

What's hot (20)

PDF
Data storage systems
PDF
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
PDF
MariaDB ColumnStore
PPTX
Bucket your partitions wisely - Cassandra summit 2016
PPTX
Full Text search in Django with Postgres
PDF
Tweaking perfomance on high-load projects_Думанский Дмитрий
PPT
NoSQL Analytics: JSON Data Analysis and Acceleration in MongoDB World
PDF
Advanced Redis data structures
PPTX
Couchbase Tutorial: Big data Open Source Systems: VLDB2018
PPT
Database Architectures and Hypertable
PPTX
2014 05-07-fr - add dev series - session 6 - deploying your application-2
PDF
Using MongoDB and Python
PDF
ManetoDB: Key/Value storage, BigData in Open Stack_Сергей Ковалев, Илья Свиридов
PDF
Hypertable - massively scalable nosql database
PPT
The NoSQL Way in Postgres
 
PDF
Mongodb - Scaling write performance
PDF
Hypertable
PDF
Timyang新浪微博设计谈
PDF
Володимир Гоцик. Getting maximum of python, django with postgres 9.4. PyCon B...
PPTX
Bucket Your Partitions Wisely (Markus Höfer, codecentric AG) | Cassandra Summ...
Data storage systems
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
MariaDB ColumnStore
Bucket your partitions wisely - Cassandra summit 2016
Full Text search in Django with Postgres
Tweaking perfomance on high-load projects_Думанский Дмитрий
NoSQL Analytics: JSON Data Analysis and Acceleration in MongoDB World
Advanced Redis data structures
Couchbase Tutorial: Big data Open Source Systems: VLDB2018
Database Architectures and Hypertable
2014 05-07-fr - add dev series - session 6 - deploying your application-2
Using MongoDB and Python
ManetoDB: Key/Value storage, BigData in Open Stack_Сергей Ковалев, Илья Свиридов
Hypertable - massively scalable nosql database
The NoSQL Way in Postgres
 
Mongodb - Scaling write performance
Hypertable
Timyang新浪微博设计谈
Володимир Гоцик. Getting maximum of python, django with postgres 9.4. PyCon B...
Bucket Your Partitions Wisely (Markus Höfer, codecentric AG) | Cassandra Summ...
Ad

Similar to PostgreSQL 9.4: NoSQL on ACID (20)

ODP
Типы данных JSONb, соответствующие индексы и модуль jsquery – Олег Бартунов, ...
PDF
Postgres vs Mongo / Олег Бартунов (Postgres Professional)
PDF
Indexing Complex PostgreSQL Data Types
PDF
The NoSQL store everyone ignored
PDF
NoSQL store everyone ignored - Postgres Conf 2021
PDF
20071113 Msu Vasenin Seminar
PPTX
PostgreSQL as NoSQL
PPTX
PostgreSQL - It's kind've a nifty database
PPTX
PostgreSQL as an Alternative to MSSQL
PDF
PostgreSQL, your NoSQL database
PDF
Mathias test
PDF
Stefan Hochdörfer - The NoSQL Store everyone ignores: PostgreSQL - NoSQL matt...
PDF
NoSQL on ACID - Meet Unstructured Postgres
 
PDF
Flexible Indexing with Postgres
 
PDF
Postgresql 9.3 overview
PDF
Flexible Indexing with Postgres
 
PDF
JDD 2016 - Tomasz Borek - DB for next project? Why, Postgres, of course
PDF
PG Day'14 Russia, GIN — Stronger than ever in 9.4 and further, Александр Коро...
ODP
Introduction to PostgreSQL
KEY
PostgreSQL
Типы данных JSONb, соответствующие индексы и модуль jsquery – Олег Бартунов, ...
Postgres vs Mongo / Олег Бартунов (Postgres Professional)
Indexing Complex PostgreSQL Data Types
The NoSQL store everyone ignored
NoSQL store everyone ignored - Postgres Conf 2021
20071113 Msu Vasenin Seminar
PostgreSQL as NoSQL
PostgreSQL - It's kind've a nifty database
PostgreSQL as an Alternative to MSSQL
PostgreSQL, your NoSQL database
Mathias test
Stefan Hochdörfer - The NoSQL Store everyone ignores: PostgreSQL - NoSQL matt...
NoSQL on ACID - Meet Unstructured Postgres
 
Flexible Indexing with Postgres
 
Postgresql 9.3 overview
Flexible Indexing with Postgres
 
JDD 2016 - Tomasz Borek - DB for next project? Why, Postgres, of course
PG Day'14 Russia, GIN — Stronger than ever in 9.4 and further, Александр Коро...
Introduction to PostgreSQL
PostgreSQL
Ad

Recently uploaded (20)

PPTX
CHAPTER 2 - PM Management and IT Context
PDF
PTS Company Brochure 2025 (1).pdf.......
PPTX
Reimagine Home Health with the Power of Agentic AI​
PPTX
Introduction to Artificial Intelligence
PDF
EN-Survey-Report-SAP-LeanIX-EA-Insights-2025.pdf
PPTX
Why Generative AI is the Future of Content, Code & Creativity?
PDF
Product Update: Alluxio AI 3.7 Now with Sub-Millisecond Latency
PDF
Nekopoi APK 2025 free lastest update
PPTX
Odoo POS Development Services by CandidRoot Solutions
PPTX
Agentic AI Use Case- Contract Lifecycle Management (CLM).pptx
PDF
Adobe Illustrator 28.6 Crack My Vision of Vector Design
PDF
iTop VPN Free 5.6.0.5262 Crack latest version 2025
PDF
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
PDF
Adobe Premiere Pro 2025 (v24.5.0.057) Crack free
PDF
Upgrade and Innovation Strategies for SAP ERP Customers
PDF
Understanding Forklifts - TECH EHS Solution
PDF
medical staffing services at VALiNTRY
PDF
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
PDF
Softaken Excel to vCard Converter Software.pdf
PPTX
Transform Your Business with a Software ERP System
CHAPTER 2 - PM Management and IT Context
PTS Company Brochure 2025 (1).pdf.......
Reimagine Home Health with the Power of Agentic AI​
Introduction to Artificial Intelligence
EN-Survey-Report-SAP-LeanIX-EA-Insights-2025.pdf
Why Generative AI is the Future of Content, Code & Creativity?
Product Update: Alluxio AI 3.7 Now with Sub-Millisecond Latency
Nekopoi APK 2025 free lastest update
Odoo POS Development Services by CandidRoot Solutions
Agentic AI Use Case- Contract Lifecycle Management (CLM).pptx
Adobe Illustrator 28.6 Crack My Vision of Vector Design
iTop VPN Free 5.6.0.5262 Crack latest version 2025
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
Adobe Premiere Pro 2025 (v24.5.0.057) Crack free
Upgrade and Innovation Strategies for SAP ERP Customers
Understanding Forklifts - TECH EHS Solution
medical staffing services at VALiNTRY
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
Softaken Excel to vCard Converter Software.pdf
Transform Your Business with a Software ERP System

PostgreSQL 9.4: NoSQL on ACID

  • 3. Oleg Bartunov, Teodor Sigaev • Locale support • Extendability (indexing) • GiST (KNN), GIN, SP-GiST • Full Text Search (FTS) • Jsonb, VODKA • Extensions: • intarray • pg_trgm • ltree • hstore • plantuner https://www.facebook.com/oleg.bartunov [email protected], [email protected] https://www.facebook.com/groups/postgresql/
  • 4. Alexander Korotkov [email protected] ● Indexed regexp search ● GIN compression & fast scan ● Fast GiST build ● Range types indexing ● Split for GiST ● Indexing for jsonb ● jsquery ● Generic WAL + create am (WIP)
  • 5. Agenda • The problem • Hstore • Introduction to jsonb indexing • Jsquery - Jsonb Query Language • Exercises on jsonb GIN opclasses with Jsquery support • VODKA access method
  • 6. The problem • The world of data and applications is changing • BIG DATA (Volume of data,Velocity of data in-out, Variety of data) • Web applications are service-oriented • Service itself can aggregate data, check consistency of data • High concurrency, simple queries • Simple database (key-value) is ok • Eventual consistency is ok, no ACID overhead • Application needs faster releases • NoSQL databases match all of these — scalable, efficient, fault-tolerant, no rigid schema, ready to accept any data.
  • 7. NoSQL (концептуальные предпосылки) • Реляционные СУБД — интеграционные • Все приложения общаются через СУБД • SQL — универсальный язык работы с данными • Все изменения в СУБД доступны всем • Изменения схемы очень затратны, медл. релизы • Рассчитаны на интерактивную работу • Интересны агрегаты, а не сами данные, нужен SQL • SQL отслеживает транзакционность, ограничения целостности... вместо человека
  • 8. NoSQL (концептуальные предпосылки) • Сервисная архитектура изменила подход к СУБД • Приложение состоит из сервисов, SQL->HTTP • Сервисам не нужна одна монолитная СУБД • Часто достаточно простых key-value СУБД • Схема меняется «на ходу», быстрые релизы • ACID → BASE • Сервисы — это программы, которые могут сами заниматься агрегированием • Сервисы могут сами следить за целостностью данных • Много данных, аналитика, большое кол-во одновременных запросов • Распределенность - кластеры дешевых shared-nothing машин • NoSQL —горизонтальная масштабируемость и производительность
  • 10. NoSQL • Key-value databases • Ordered k-v for ranges support • Column family (column-oriented) stores • Big Table — value has structure: • column families, columns, and timestamped versions (maps-of maps-of maps) • Document databases • Value has arbitrary structure • Graph databases — evolution od ordered-kv
  • 11. NoSQL databases (wikipedia) …+++ Document store * Lotus Notes * CouchDB * MongoDB * Apache Jackrabbit * Colayer * XML databases o MarkLogic Server o eXist Graph * Neo4j * AllegroGraph Tabular * BigTable * Mnesia * Hbase * Hypertable Key/value store on disk * Tuple space * Memcachedb * Redis * SimpleDB * flare * Tokyo Cabinet * BigTable Key/value cache in RAM * memcached * Velocity * Redis Eventually-consistent key-value store * Dynamo * Cassandra * Project Voldemort Ordered key-value store * NMDB * Luxio * Memcachedb * Berkeley DB Object database * Db4o * InterSystems Caché * Objectivity/DB * ZODB
  • 13. CAP теорема: Наш вариант
  • 14. The problem • What if application needs ACID and flexibility of NoSQL ? • Relational databases work with data with schema known in advance • One of the major compaints to relational databases is rigid schema. It's not easy to change schema online (ALTER TABLE … ADD COLUMN...) • Application should wait for schema changing, infrequent releases • NoSQL uses json format, why not have it in relational database ? JSON in PostgreSQL This is the challenge !
  • 15. Challenge to PostgreSQL ! • Full support of semi-stuctured data in PostgreSQL • Storage • Operators and functions • Efficiency (fast access to storage, indexes) • Integration with CORE (planner, optimiser) • Actually, PostgreSQL is schema-less database since 2003 — hstore, one of the most popular extension !
  • 17. Introduction to Hstore id col1 col2 col3 col4 col5 A lot of columns key1, …. keyN ● The problem: ● Total number of columns may be very large ● Only several fields are searchable ( used in WHERE) ● Other columns are used only to output ● These columns may not known in advance ● Solution ● New data type (hstore), which consists of (key,value) pairs (a'la perl hash)
  • 18. Introduction to Hstore id col1 col2 col3 col4 col5 Hstore key1=>val1, key2=>val2,..... ● Easy to add key=>value pair ● No need change schema, just change hstore. ● Schema-less PostgreSQL in 2003 !
  • 19. Introduction to hstore • Hstore — key/value binary storage (inspired by perl hash) 'a=>1, b=>2'::hstore • Key, value — strings • Get value for a key: hstore -> text • Operators with indexing support (GiST, GIN) Check for key: hstore ? text Contains: hstore @> hstore • check documentations for more • Functions for hstore manipulations (akeys, avals, skeys, svals, each,......) • Hstore provides PostgreSQL schema-less feature ! • Faster releases, no problem with schema upgrade
  • 20. Hstore binary storage Npairs:31 Varlena header New version flag:1 Key endpos: 31 Val endpos: 31 ISNULL:1 key... val ... Start End First key 0 HEntry[0] i-th key HEntry[i*2 - 1] HEntry[i*2] i-th value HEntry[i*2] HEntry[i*2 + 1] String arrayHEntry array Pairs are lexicographically ordered by key
  • 21. Hstore limitations • Levels: unlimited • Number of elements in array: 2^31 • Number of pairs in hash: 2^31 • Length of string: 2^31 bytes 2^31 bytes = 2 GB
  • 22. History of hstore development • May 16, 2003 — first version of hstore
  • 23. History of hstore development • May 16, 2003 - first (unpublished) version of hstore for PostgreSQL 7.3 • Dec, 05, 2006 - hstore is a part of PostgreSQL 8.2 (thanks, Hubert Depesz Lubaczewski!) • May 23, 2007 - GIN index for hstore, PostgreSQL 8.3 • Sep, 20, 2010 - Andrew Gierth improved hstore, PostgreSQL 9.0
  • 25. Inverted Index QUERY: compensation accelerometers INDEX: accelerometers compensation 5,10,25,28,3030,36,58,59,61,73,74 3030,68 RESULT: 3030
  • 26. GIN improvements • GIN in 9.4 is greatly improved • Posting lists compression (varbyte encoding) — smaller indexes • 9.3: always 6 bytes (4 bytes blockNumber , 2 bytes offset): 90 bytes (0,8) (0,14) (0,17) (0,22) (0,26) (0,33) (0,34) (0,35) (0,45) (0,47) (0,48) (1,3) (1,4) (1,6) (1,8) • 9.4: 1-6 bytes per each item, deltas from previous item: 21 bytes (0,8) +6 +3 +5 +4 +7 +1 +1 +10 +2 +1 +2051 +1+2 +2 SELECT g % 10 FROM generate_series(1,10000000) g; 11Mb vs 58Mb • Fast scan of posting lists - «rare & frequent» queries much faster • 9.3: read posting lists for «rare» and «frequent» and join them Time(frequent & rare) ~ Time(frequent) • 9.4: start from posting list for «rare» and skip «frequent» list if no match Time(frequent & rare) ~ Time(rare)
  • 27. Hstore is DEAD ? No ! • How hstore benefits by GIN improvement in 9.4 ? GIN stands for Generalized Inverted Index, so virtually all data types, which use GIN, get benefit ! • Default hstore GIN opclass considers keys and values separately • Keys are «frequent», value are «rare» • Contains query: hstore @> 'key=>value' improved a lot for «rare» values • Index size is smaller, less io
  • 28. Hstore 9.3 vs 9.4 Total: 7240858 geo records: "fcode"=>"RFSU", "point"=>"(8.85,112.53333)", "fclass"=>"U", "asciiname"=>"London Reefs", "elevation"=>NULL, "geonameid"=>"1879967", "population"=>"0" Query: SELECT count(*) FROM geo WHERE geo @> 'fcode=>STM'; gin_hstore_ops: index keys and values gin_hstore_bytea_ops = gin_hstore_ops, no collation comparison gin_hstore_hash_ops: index hash(key.value)
  • 29. Hstore 9.3 vs 9.4 |-------------------------+-------+----------+-------+---------| | Name | Type | Owner | Table | Size | |-------------------------+-------+----------+-------+---------| | geo | table | postgres | | 1352 MB | | geo_hstore_bytea_ops | index | postgres | geo | 1680 MB | | geo_hstore_hash_ops_idx | index | postgres | geo | 1073 MB | |-------------------------+-------+----------+-------+---------| |-------------------------+-------+----------+-------+---------| | Name | Type | Owner | Table | Size | |-------------------------+-------+----------+-------+---------| | geo | table | postgres | | 1352 MB | | geo_hstore_bytea_ops | index | postgres | geo | 1296 MB | | geo_hstore_hash_ops_idx | index | postgres | geo | 925 MB | |-------------------------+-------+----------+-------+---------| 9.4 9.3 CREATE OPERATOR CLASS gin_hstore_bytea_ops FOR TYPE hstore …..................................................................................... FUNCTION 1 byteacmp(bytea,bytea), …..................................................................................... STORAGE bytea; CREATE INDEX: 239 s Much faster comparison (no collation) CREATE OPERATOR CLASS gin_hstore_ops FOR TYPE hstore …..................................................................................... FUNCTION 1 bttextcmp(text,text),, …..................................................................................... STORAGE text; CREATE INDEX: 2870 s
  • 30. Hstore 9.3 vs 9.4 SUMMARY: ● 9.4 GIN posting list compression: indexes are smaller ● 9.4 GIN is smart regarding 'freq & rare' queries: time (freq & rare) ~ time (rare) instead of time (freq & rare) ~ time (freq) ● gin_hstore_hash_ops is good on 9.3 & 9.4 and faster default gin opclass ● Use gin_hstore_bytea_ops instead of default gin_hstore_ops — much faster create index Get hstore_ops from: from https://github.com/akorotkov/hstore_ops
  • 31. Introduction to hstore • Hstore benefits • In provides a flexible model for storing a semi-structured data in relational database • hstore has binary storage and rich set of operators and functions, indexes • Hstore drawbacks • Too simple model ! Hstore key-value model doesn't supports tree-like structures as json (introduced in 2006, 3 years after hstore) • Json — popular and standartized (ECMA-404 The JSON Data Interchange Standard, JSON RFC-7159) • Json — PostgreSQL 9.2, textual storage
  • 32. Hstore vs Json SELECT sum((v->'a')::text::int) FROM json_test; 851.012 ms SELECT sum((v->'a')::int) FROM hstore_test; 330.027 ms • hstore is faster than json even on simple data CREATE TABLE hstore_test AS (SELECT 'a=>1, b=>2, c=>3, d=>4, e=>5'::hstore AS v FROM generate_series(1,1000000)); CREATE TABLE json_test AS (SELECT '{"a":1, "b":2, "c":3, "d":4, "e":5}'::json AS v FROM generate_series(1,1000000));
  • 33. Hstore vs Json • PostgreSQL already has json since 9.2, which supports document- based model, but • It's slow, since it has no binary representation and needs to be parsed every time • Hstore is fast, thanks to binary representation and index support • It's possible to convert hstore to json and vice versa, but current hstore is limited to key-value • Need hstore with document-based model. Share it's binary representation with json !
  • 35. Nested hstore & jsonb • Nested hstore at PGCon-2013, Ottawa, Canada ( May 24) — thanks Engine Yard for support ! One step forward true json data type.Nested hstore with arrays support • Binary storage for nested data at PGCon Europe — 2013, Dublin, Ireland (Oct 29) Binary storage for nested data structuresand application to hstore data type • November, 2013 — binary storage was reworked, nested hstore and jsonb share the same storage. Andrew Dunstan joined the project. • January, 2014 - binary storage moved to core
  • 36. Nested hstore & jsonb • Feb-Mar, 2014 - Peter Geoghegan joined the project, nested hstore was cancelled in favour to jsonb (Nested hstore patch for 9.3). • Mar 23, 2014 Andrew Dunstan committed jsonb to 9.4 branch ! pgsql: Introduce jsonb, a structured format for storing json. Introduce jsonb, a structured format for storing json. The new format accepts exactly the same data as the json type. However, it is stored in a format that does not require reparsing the orgiginal text in order to process it, making it much more suitable for indexing and other operations. Insignificant whitespace is discarded, and the order of object keys is not preserved. Neither are duplicate object keys kept - the later value for a given key is the only one stored.
  • 37. Jsonb vs Json SELECT '{"c":0, "a":2,"a":1}'::json, '{"c":0, "a":2,"a":1}'::jsonb; json | jsonb -----------------------+------------------ {"c":0, "a":2,"a":1} | {"a": 1, "c": 0} (1 row) • json: textual storage «as is» • jsonb: no whitespaces • jsonb: no duplicate keys, last key win • jsonb: keys are sorted
  • 38. Jsonb vs Json • Data • 1,252,973 Delicious bookmarks • Server • MBA, 8 GB RAM, 256 GB SSD • Test • Input performance - copy data to table • Access performance - get value by key • Search performance contains @> operator
  • 39. Jsonb vs Json • Data • 1,252,973 bookmarks from Delicious in json format (js) • The same bookmarks in jsonb format (jb) • The same bookmarks as text (tx) =# dt+ List of relations Schema | Name | Type | Owner | Size | Description --------+------+-------+----------+---------+------------- public | jb | table | postgres | 1374 MB | overhead is < 4% public | js | table | postgres | 1322 MB | public | tx | table | postgres | 1322 MB |
  • 40. Jsonb vs Json • Input performance (parser) Copy data (1,252,973 rows) as text, json,jsonb copy tt from '/path/to/test.dump' Text: 34 s - as is Json: 37 s - json validation Jsonb: 43 s - json validation, binary storage
  • 41. Jsonb vs Json (binary storage) • Access performance — get value by key • Base: SELECT js FROM js; • Jsonb: SELECT j->>'updated' FROM jb; • Json: SELECT j->>'updated' FROM js; Base: 0.6 s Jsonb: 1 s 0.4 Json: 9.6 s 9 Jsonb ~ 20X faster Json
  • 42. Jsonb vs Json EXPLAIN ANALYZE SELECt count(*) FROM js WHERE js #>>'{tags,0,term}' = 'NYC'; QUERY PLAN ---------------------------------------------------------------------------- Aggregate (cost=187812.38..187812.39 rows=1 width=0) (actual time=10054.602..10054.602 rows=1 loops=1) -> Seq Scan on js (cost=0.00..187796.88 rows=6201 width=0) (actual time=0.030..10054.426 rows=123 loops=1) Filter: ((js #>> '{tags,0,term}'::text[]) = 'NYC'::text) Rows Removed by Filter: 1252850 Planning time: 0.078 ms Execution runtime: 10054.635 ms (6 rows) Json: no contains @> operator, search first array element
  • 43. Jsonb vs Json (binary storage) EXPLAIN ANALYZE SELECT count(*) FROM jb WHERE jb @> '{"tags":[{"term":"NYC"}]}'::jsonb; QUERY PLAN --------------------------------------------------------------------------------------- Aggregate (cost=191521.30..191521.31 rows=1 width=0) (actual time=1263.201..1263.201 rows=1 loops=1) -> Seq Scan on jb (cost=0.00..191518.16 rows=1253 width=0) (actual time=0.007..1263.065 rows=285 loops=1) Filter: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb) Rows Removed by Filter: 1252688 Planning time: 0.065 ms Execution runtime: 1263.225 ms Execution runtime: 10054.635 ms (6 rows) Jsonb ~ 10X faster Json
  • 44. Jsonb vs Json (GIN: key && value) EXPLAIN ANALYZE SELECT count(*) FROM jb WHERE jb @> '{"tags":[{"term":"NYC"}]}'::jsonb; QUERY PLAN --------------------------------------------------------------------------------------- Aggregate (cost=4772.72..4772.73 rows=1 width=0) (actual time=8.486..8.486 rows=1 loops=1) -> Bitmap Heap Scan on jb (cost=73.71..4769.59 rows=1253 width=0) (actual time=8.049..8.462 rows=285 loops=1) Recheck Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb) Heap Blocks: exact=285 -> Bitmap Index Scan on gin_jb_idx (cost=0.00..73.40 rows=1253 width=0) (actual time=8.014..8.014 rows=285 loops=1) Index Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb) Planning time: 0.115 ms Execution runtime: 8.515 ms Execution runtime: 10054.635 ms (8 rows) CREATE INDEX gin_jb_idx ON jb USING gin(jb); Jsonb ~ 150X faster Json
  • 45. Jsonb vs Json (GIN: hash path.value) EXPLAIN ANALYZE SELECT count(*) FROM jb WHERE jb @> '{"tags":[{"term":"NYC"}]}'::jsonb; QUERY PLAN --------------------------------------------------------------------------------------- Aggregate (cost=4732.72..4732.73 rows=1 width=0) (actual time=0.644..0.644 rows=1 loops=1) -> Bitmap Heap Scan on jb (cost=33.71..4729.59 rows=1253 width=0) (actual time=0.102..0.620 rows=285 loops=1) Recheck Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb) Heap Blocks: exact=285 -> Bitmap Index Scan on gin_jb_path_idx (cost=0.00..33.40 rows=1253 width=0) (actual time=0.062..0.062 rows=285 loops=1) Index Cond: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb) Planning time: 0.056 ms Execution runtime: 0.668 ms Execution runtime: 10054.635 ms (8 rows) CREATE INDEX gin_jb_path_idx ON jb USING gin(jb jsonb_path_ops); Jsonb ~ 1800X faster Json
  • 46. PostgreSQL 9.4 vs Mongo 2.6.0 • Operator contains @> • json : 10 s seqscan • jsonb : 8.5 ms GIN jsonb_ops • jsonb : 0.7 ms GIN jsonb_path_ops • mongo : 1.0 ms btree index • Index size • jsonb_ops - 636 Mb (no compression, 815Mb) jsonb_path_ops - 295 Mb • jsonb_path_ops (tags) - 44 Mb USING gin((jb->'tags') jsonb_path_ops • mongo (tags) - 387 Mb mongo (tags.term) - 100 Mb •Table size •postgres : 1.3Gb •mongo : 1.8Gb •Input performance: • Text : 34 s • Json : 37 s • Jsonb : 43 s • mongo : 13 m
  • 47. Что сейчас может Jsonb ? • Contains operators - jsonb @> jsonb, jsonb <@ jsonb (GIN indexes) jb @> '{"tags":[{"term":"NYC"}]}'::jsonb Keys should be specified from root ● Equivalence operator — jsonb = jsonb (GIN indexes) • Exists operators — jsonb ? text, jsonb ?! text[], jsonb ?& text[] (GIN indexes) jb WHERE jb ?| '{tags,links}' Only root keys supported • Operators on jsonb parts (functional indexes) SELECT ('{"a": {"b":5}}'::jsonb -> 'a'->>'b')::int > 2; CREATE INDEX ….USING BTREE ( (jb->'a'->>'b')::int); Very cumbersome, too many functional indexes
  • 48. Найти что-нибудь красное • Table "public.js_test" Column | Type | Modifiers --------+---------+----------- id | integer | not null value | jsonb | select * from js_test; id | value ----+----------------------------------------------------------------------- 1 | [1, "a", true, {"b": "c", "f": false}] 2 | {"a": "blue", "t": [{"color": "red", "width": 100}]} 3 | [{"color": "red", "width": 100}] 4 | {"color": "red", "width": 100} 5 | {"a": "blue", "t": [{"color": "red", "width": 100}], "color": "red"} 6 | {"a": "blue", "t": [{"color": "blue", "width": 100}], "color": "red"} 7 | {"a": "blue", "t": [{"color": "blue", "width": 100}], "colr": "red"} 8 | {"a": "blue", "t": [{"color": "green", "width": 100}]} 9 | {"color": "green", "value": "red", "width": 100} (9 rows)
  • 49. Найти что-нибудь красное • WITH RECURSIVE t(id, value) AS ( SELECT * FROM js_test UNION ALL ( SELECT t.id, COALESCE(kv.value, e.value) AS value FROM t LEFT JOIN LATERAL jsonb_each( CASE WHEN jsonb_typeof(t.value) = 'object' THEN t.value ELSE NULL END) kv ON true LEFT JOIN LATERAL jsonb_array_elements( CASE WHEN jsonb_typeof(t.value) = 'array' THEN t.value ELSE NULL END) e ON true WHERE kv.value IS NOT NULL OR e.value IS NOT NULL ) ) SELECT js_test.* FROM (SELECT id FROM t WHERE value @> '{"color": "red"}' GROUP BY id) x JOIN js_test ON js_test.id = x.id; • Весьма непростое решение !
  • 50. Что хочется ? • Need Jsonb query language • Simple and effective way to search in arrays (and other iterative searches) • More comparison operators (сейчас только =) • Types support • Schema support (constraints on keys, values) • Indexes support
  • 51. Что хочется ? • Need Jsonb query language • Simple and effective way to search in arrays (and other iterative searches) • More comparison operators (сейчас только =) • Types support • Schema support (constraints on keys, values) • Indexes support • Introduce Jsquery - textual data type and @@ match operator jsonb @@ jsquery
  • 53. Jsonb query language (Jsquery) value_list ::= scalar_value | value_list ',' scalar_value array ::= '[' value_list ']' scalar_value ::= null | STRING | true | false | NUMERIC | OBJECT ….... Expr ::= path value_expr | path HINT value_expr | NOT expr | NOT HINT value_expr | NOT value_expr | path '(' expr ')' | '(' expr ')' | expr AND expr | expr OR expr path ::= key | path '.' key_any | NOT '.' key_any key ::= '*' | '#' | '%' | '$' | STRING …..... key_any ::= key | NOT value_expr ::= '=' scalar_value | IN '(' value_list ')' | '=' array | '=' '*' | '<' NUMERIC | '<' '=' NUMERIC | '>' NUMERIC | '>' '=' NUMERIC | '@' '>' array | '<' '@' array | '&' '&' array | IS ARRAY | IS NUMERIC | IS OBJECT | IS STRING | IS BOOLEAN
  • 54. Jsonb query language (Jsquery) • # - any element array • % - any key • * - anything • $ - current element • Use "double quotes" for key ! SELECT '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b.# = 2'; SELECT '{"a": {"b": [1,2,3]}}'::jsonb @@ '%.b.# = 2'; SELECT '{"a": {"b": [1,2,3]}}'::jsonb @@ '*.# = 2'; select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b.# ($ = 2 OR $ < 3)'; select 'a1."12222" < 111'::jsquery; path ::= key | path '.' key_any | NOT '.' key_any key ::= '*' | '#' | '%' | '$' | STRING …..... key_any ::= key | NOT
  • 55. Jsonb query language (Jsquery) • Scalar • Test for key existence • Array overlap • Array contains • Array contained select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b.# IN (1,2,5)'; select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b = *'; select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b && [1,2,5]'; select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b @> [1,2]'; select '{"a": {"b": [1,2,3]}}'::jsonb @@ 'a.b <@ [1,2,3,4,5]'; value_expr ::= '=' scalar_value | IN '(' value_list ')' | '=' array | '=' '*' | '<' NUMERIC | '<' '=' NUMERIC | '>' NUMERIC | '>' '=' NUMERIC | '@' '>' array | '<' '@' array | '&' '&' array | IS ARRAY | IS NUMERIC | IS OBJECT | IS STRING | IS BOOLEAN
  • 56. Jsonb query language (Jsquery) • Type checking select '{"x": true}' @@ 'x IS boolean'::jsquery, '{"x": 0.1}' @@ 'x IS numeric'::jsquery; ?column? | ?column? ----------+---------- t | t IS BOOLEAN IS NUMERIC IS ARRAY IS OBJECT IS STRINGselect '{"a":{"a":1}}' @@ 'a IS object'::jsquery; ?column? ---------- t select '{"a":["xxx"]}' @@ 'a IS array'::jsquery, '["xxx"]' @@ '$ IS array'::jsquery; ?column? | ?column? ----------+---------- t | t
  • 57. Jsonb query language (Jsquery) • How many products are similar to "B000089778" and have product_sales_rank in range between 10000-20000 ? • SQL SELECT count(*) FROM jr WHERE (jr->>'product_sales_rank')::int > 10000 and (jr->> 'product_sales_rank')::int < 20000 and ….boring stuff • Jsquery SELECT count(*) FROM jr WHERE jr @@ ' similar_product_ids && ["B000089778"] AND product_sales_rank( $ > 10000 AND $ < 20000)' • Mongodb db.reviews.find( { $and :[ {similar_product_ids: { $in ["B000089778"]}}, {product_sales_rank:{$gt:10000, $lt:20000}}] } ).count()
  • 58. Найти что-нибудь красное • WITH RECURSIVE t(id, value) AS ( SELECT * FROM js_test UNION ALL ( SELECT t.id, COALESCE(kv.value, e.value) AS value FROM t LEFT JOIN LATERAL jsonb_each( CASE WHEN jsonb_typeof(t.value) = 'object' THEN t.value ELSE NULL END) kv ON true LEFT JOIN LATERAL jsonb_array_elements( CASE WHEN jsonb_typeof(t.value) = 'array' THEN t.value ELSE NULL END) e ON true WHERE kv.value IS NOT NULL OR e.value IS NOT NULL ) ) SELECT js_test.* FROM (SELECT id FROM t WHERE value @> '{"color": "red"}' GROUP BY id) x JOIN js_test ON js_test.id = x.id; • Jsquery SELECT * FROM js_test WHERE value @@ '*.color = "red"';
  • 59. Еще пример • SQL SELECT * FROM js_test2 js WHERE NOT EXISTS ( SELECT 1 FROM jsonb_array_elements(js.value) el WHERE EXISTS ( SELECT 1 FROM jsonb_each(el.value) kv WHERE NOT kv.value::text::numeric BETWEEN 0.0 AND 1.0)); • Jsquery SELECT * FROM js_test2 js WHERE '#:.%:($ >= 0 AND $ <= 1)';
  • 60. Jsonb query language (Jsquery) explain( analyze, buffers) select count(*) from jb where jb @> '{"tags":[{"term":"NYC"}]}'::jsonb; QUERY PLAN --------------------------------------------------------------------------------------------------------------- Aggregate (cost=191517.30..191517.31 rows=1 width=0) (actual time=1039.422..1039.423 rows=1 loops=1) Buffers: shared hit=97841 read=78011 -> Seq Scan on jb (cost=0.00..191514.16 rows=1253 width=0) (actual time=0.006..1039.310 rows=285 loops=1) Filter: (jb @> '{"tags": [{"term": "NYC"}]}'::jsonb) Rows Removed by Filter: 1252688 Buffers: shared hit=97841 read=78011 Planning time: 0.074 ms Execution time: 1039.444 ms explain( analyze,costs off) select count(*) from jb where jb @@ 'tags.#.term = "NYC"'; QUERY PLAN -------------------------------------------------------------------- Aggregate (actual time=891.707..891.707 rows=1 loops=1) -> Seq Scan on jb (actual time=0.010..891.553 rows=285 loops=1) Filter: (jb @@ '"tags".#."term" = "NYC"'::jsquery) Rows Removed by Filter: 1252688 Execution time: 891.745 ms
  • 61. Jsquery (indexes) • GIN opclasses with jsquery support • jsonb_value_path_ops — use Bloom filtering for key matching {"a":{"b":{"c":10}}} → 10.( bloom(a) or bloom(b) or bloom(c) ) • Good for key matching (wildcard support) , not good for range query • jsonb_path_value_ops — hash path (like jsonb_path_ops) {"a":{"b":{"c":10}}} → hash(a.b.c).10 • No wildcard support, no problem with ranges List of relations Schema | Name | Type | Owner | Table | Size | Description --------+-------------------------+-------+----------+--------------+---------+------------- public | jb | table | postgres | | 1374 MB | public | jb_value_path_idx | index | postgres | jb | 306 MB | public | jb_gin_idx | index | postgres | jb | 544 MB | public | jb_path_value_idx | index | postgres | jb | 306 MB | public | jb_path_idx | index | postgres | jb | 251 MB |
  • 62. Jsquery (indexes) explain( analyze,costs off) select count(*) from jb where jb @@ 'tags.#.term = "NYC"'; QUERY PLAN ------------------------------------------------------------------------------------------------- Aggregate (actual time=0.609..0.609 rows=1 loops=1) -> Bitmap Heap Scan on jb (actual time=0.115..0.580 rows=285 loops=1) Recheck Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery) Heap Blocks: exact=285 -> Bitmap Index Scan on jb_value_path_idx (actual time=0.073..0.073 rows=285 loops=1) Index Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery) Execution time: 0.634 ms (7 rows)
  • 63. Jsquery (indexes) explain( analyze,costs off) select count(*) from jb where jb @@ '*.term = "NYC"'; QUERY PLAN ------------------------------------------------------------------------------------------------- Aggregate (actual time=0.688..0.688 rows=1 loops=1) -> Bitmap Heap Scan on jb (actual time=0.145..0.660 rows=285 loops=1) Recheck Cond: (jb @@ '*."term" = "NYC"'::jsquery) Heap Blocks: exact=285 -> Bitmap Index Scan on jb_value_path_idx (actual time=0.113..0.113 rows=285 loops=1) Index Cond: (jb @@ '*."term" = "NYC"'::jsquery) Execution time: 0.716 ms (7 rows)
  • 64. Citus dataset{ "customer_id": "AE22YDHSBFYIP", "product_category": "Business & Investing", "product_group": "Book", "product_id": "1551803542", "product_sales_rank": 11611, "product_subcategory": "General", "product_title": "Start and Run a Coffee Bar (Start & Run a)", "review_date": { "$date": 31363200000 }, "review_helpful_votes": 0, "review_rating": 5, "review_votes": 10, "similar_product_ids": [ "0471136174", "0910627312", "047112138X", "0786883561", "0201570483" ] } • 3023162 reviews from Citus 1998-2000 years • 1573 MB
  • 65. Jsquery (indexes) explain (analyze, costs off) select count(*) from jr where jr @@ ' similar_product_ids && ["B000089778"]'; QUERY PLAN ------------------------------------------------------------------------------------------------ Aggregate (actual time=0.359..0.359 rows=1 loops=1) -> Bitmap Heap Scan on jr (actual time=0.084..0.337 rows=185 loops=1) Recheck Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery) Heap Blocks: exact=107 -> Bitmap Index Scan on jr_path_value_idx (actual time=0.057..0.057 rows=185 loops=1) Index Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery) Execution time: 0.394 ms (7 rows)
  • 66. Jsquery (indexes) explain (analyze, costs off) select count(*) from jr where jr @@ ' similar_product_ids && ["B000089778"] AND product_sales_rank( $ > 10000 AND $ < 20000)'; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------------- Aggregate (actual time=126.149..126.149 rows=1 loops=1) -> Bitmap Heap Scan on jr (actual time=126.057..126.143 rows=45 loops=1) Recheck Cond: (jr @@ '("similar_product_ids" && ["B000089778"] & "product_sales_rank"($ > 10000 & $ < 20000))'::jsquery) Heap Blocks: exact=45 -> Bitmap Index Scan on jr_path_value_idx (actual time=126.029..126.029 rows=45 loops=1) Index Cond: (jr @@ '("similar_product_ids" && ["B000089778"] & "product_sales_rank"($ > 10000 & $ < 20000))'::jsquery) Execution time: 129.309 ms !!! No statistics (7 rows) • No statistics, no planning :( Not selective, better not use index!
  • 67. MongoDB 2.6.0 db.reviews.find( { $and :[ {similar_product_ids: { $in:["B000089778"]}}, {product_sales_rank:{$gt:10000, $lt:20000}}] } ) .explain() { "n" : 45, …................. "millis" : 7, "indexBounds" : { "similar_product_ids" : [ index size = 400 MB just for similar_product_ids !!! [ "B000089778", "B000089778" ] ] }, }
  • 68. Jsquery (indexes) explain (analyze,costs off) select count(*) from jr where jr @@ ' similar_product_ids && ["B000089778"]' and (jr->>'product_sales_rank')::int>10000 and (jr->>'product_sales_rank')::int<20000; ----------------------------------------------------------------------------------------------------------------------------------------- Aggregate (actual time=0.479..0.479 rows=1 loops=1) -> Bitmap Heap Scan on jr (actual time=0.079..0.472 rows=45 loops=1) Recheck Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery) Filter: ((((jr ->> 'product_sales_rank'::text))::integer > 10000) AND (((jr ->> 'product_sales_rank'::text))::integer < 20000)) Rows Removed by Filter: 140 Heap Blocks: exact=107 -> Bitmap Index Scan on jr_path_value_idx (actual time=0.041..0.041 rows=185 loops=1) Index Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery) Execution time: 0.506 ms Potentially, query could be faster Mongo ! (9 rows) • If we rewrite query and use planner
  • 69. Jsquery (optimiser) — NEW ! • Jsquery now has built-in optimiser for simple queries. explain (analyze, costs off) select count(*) from jr where jr @@ 'similar_product_ids && ["B000089778"] AND product_sales_rank( $ > 10000 AND $ < 20000)' ------------------------------------------------------------------------------------------------------------------------------------------ Aggregate (actual time=0.422..0.422 rows=1 loops=1) -> Bitmap Heap Scan on jr (actual time=0.099..0.416 rows=45 loops=1) Recheck Cond: (jr @@ '("similar_product_ids" && ["B000089778"] AND "product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery) Rows Removed by Index Recheck: 140 Heap Blocks: exact=107 -> Bitmap Index Scan on jr_path_value_idx (actual time=0.060..0.060 rows=185 loops=1) Index Cond: (jr @@ '("similar_product_ids" && ["B000089778"] AND "product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery) Execution time: 0.480 ms vs 7 ms MongoDB !
  • 70. Jsquery (optimiser) — NEW ! • Jsquery now has built-in optimiser for simple queries. Analyze query tree and push non-selective parts to recheck (like filter) Selectivity classes: 1) Equality (x = c) 2) Range (c1 < x < c2) 3) Inequality (c > c1) 4) Is (x is type) 5) Any (x = *) SELECT gin_debug_query_path_value('similar_product_ids && ["B000089778"] AND product_sales_rank( $ > 10000 AND $ < 20000)'); gin_debug_query_path_value ------------------------------------------------- similar_product_ids.# = "B000089778" , entry 0 +
  • 71. Jsquery (optimiser) — NEW ! • Jsquery optimiser pushes non-selective operators to recheck explain (analyze, costs off) select count(*) from jr where jr @@ 'similar_product_ids && ["B000089778"] AND product_sales_rank( $ > 10000 AND $ < 20000)' ------------------------------------------------------------------------------------------------------------------------------------------ Aggregate (actual time=0.422..0.422 rows=1 loops=1) -> Bitmap Heap Scan on jr (actual time=0.099..0.416 rows=45 loops=1) Recheck Cond: (jr @@ '("similar_product_ids" && ["B000089778"] AND "product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery) Rows Removed by Index Recheck: 140 Heap Blocks: exact=107 -> Bitmap Index Scan on jr_path_value_idx (actual time=0.060..0.060 rows=185 loops=1) Index Cond: (jr @@ '("similar_product_ids" && ["B000089778"] AND "product_sales_rank"($ > 10000 AND $ < 20000))'::jsquery) Execution time: 0.480 ms
  • 72. Jsquery (HINTING) — NEW ! • Jsquery now has HINTING ( if you don't like optimiser)! explain (analyze, costs off) select count(*) from jr where jr @@ 'product_sales_rank > 10000' ---------------------------------------------------------------------------------------------------------- Aggregate (actual time=2507.410..2507.410 rows=1 loops=1) -> Bitmap Heap Scan on jr (actual time=1118.814..2352.286 rows=2373140 loops=1) Recheck Cond: (jr @@ '"product_sales_rank" > 10000'::jsquery) Heap Blocks: exact=201209 -> Bitmap Index Scan on jr_path_value_idx (actual time=1052.483..1052.48 rows=2373140 loops=1) Index Cond: (jr @@ '"product_sales_rank" > 10000'::jsquery) Execution time: 2524.951 ms • Better not to use index — HINT /* --noindex */ explain (analyze, costs off) select count(*) from jr where jr @@ 'product_sales_rank /*-- noindex */ > 10000'; ---------------------------------------------------------------------------------- Aggregate (actual time=1376.262..1376.262 rows=1 loops=1) -> Seq Scan on jr (actual time=0.013..1222.123 rows=2373140 loops=1) Filter: (jr @@ '"product_sales_rank" /*-- noindex */ > 10000'::jsquery) Rows Removed by Filter: 650022 Execution time: 1376.284 ms
  • 73. Contrib/jsquery • Jsquery index support is quite efficient ( 0.5 ms vs Mongo 7 ms ! ) • Future direction • Make jsquery planner friendly • Need statistics for jsonb • Availability • Jsquery + opclasses are available as extensions • Grab it from https://github.com/akorotkov/jsquery (branch master) , we need your feedback !
  • 76. Что дальше ? • SQL-level jsquery (расширяемость, статистика) • VODKA access method ! VODKA Optimized Dendriform Keys Array • Комбинация произвольных методов доступа
  • 77. Better indexing ... • GIN is a proven and effective index access method • Need indexing for jsonb with operations on paths (no hash!) and values • B-tree in entry tree is not good - length limit, no prefix compression List of relations Schema | Name | Type | Owner | Table | Size | Description --------+-----------------------------+-------+----------+---------------+---------+------------- public | jb | table | postgres | | 1374 MB | public | jb_uniq_paths | table | postgres | | 912 MB | public | jb_uniq_paths_btree_idx | index | postgres | jb_uniq_paths | 885 MB |text_pattern_ops public | jb_uniq_paths_spgist_idx | index | postgres | jb_uniq_paths | 598 MB |now much less !
  • 78. Better indexing ... • Provide interface to change hardcoded B-tree in Entry tree • Use spgist opclass for storing paths and values as is (strings hashed in values) • We may go further - provide interface to change hardcoded B-tree in posting tree • GIS aware full text search ! • New index access method CREATE INDEX … USING VODKA
  • 79. GIN History • Introduced at PostgreSQL Anniversary Meeting in Toronto, Jul 7-8, 2006 by Oleg Bartunov and Teodor Sigaev
  • 80. GIN History • Introduced at PostgreSQL Anniversary Meeting in Toronto, Jul 7-8, 2006 by Oleg Bartunov and Teodor Sigaev • Supported by JFG Networks (France) • «Gin stands for Generalized Inverted iNdex and should be considered as a genie, not a drink.» • Alexander Korotkov, Heikki Linnakangas have joined GIN++ development in 2013
  • 81. GIN History TODO ---- Nearest future: * Opclasses for all types (no programming, just many catalog changes). Distant future: * Replace B-tree of entries to something like GiST (VODKA ! 2014) * Add multicolumn support * Optimize insert operations (background index insertion) • From GIN Readme, posted in -hackers, 2006-04-26
  • 82. GIN index structure for jsonb { "product_group": "Book", "product_sales_rank": 15000 }, { "product_group": "Music", "product_sales_rank": 25000 }
  • 83. Vodka index structure for jsonb { "product_group": "Book", "product_sales_rank": 15000 }, { "product_group": "Music", "product_sales_rank": 25000 }
  • 84. CREATE INDEX … USING VODKA set maintenance_work_mem = '1GB'; List of relations Schema | Name | Type | Owner | Table | Size | Description --------+--------------------+-------+----------+-------+---------+------------- public | jb | table | postgres | | 1374 MB | 1252973 rows public | jb_value_path_idx | index | postgres | jb | 306 MB | 98769.096 public | jb_gin_idx | index | postgres | jb | 544 MB | 129860.859 public | jb_path_value_idx | index | postgres | jb | 306 MB | 100560.313 public | jb_path_idx | index | postgres | jb | 251 MB | 68880.320 public | jb_vodka_idx | index | postgres | jb | 409 MB | 185362.865 public | jb_vodka_idx5 | index | postgres | jb | 325 MB | 174627.234 new spgist (6 rows) • Delicious bookmarks, mostly text data
  • 85. CREATE INDEX … USING VODKA select count(*) from jb where jb @@ 'tags.#.term = "NYC"'; ------------------------------------------------------------------------------------------- Aggregate (actual time=0.423..0.423 rows=1 loops=1) -> Bitmap Heap Scan on jb (actual time=0.146..0.404 rows=285 loops=1) Recheck Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery) Heap Blocks: exact=285 -> Bitmap Index Scan on jb_vodka_idx (actual time=0.108..0.108 rows=285 loops=1) Index Cond: (jb @@ '"tags".#."term" = "NYC"'::jsquery) Execution time: 0.456 ms (0.634 ms, GIN jsonb_value_path_ops) select count(*) from jb where jb @@ '*.term = "NYC"'; ------------------------------------------------------------------------------------------- Aggregate (actual time=0.495..0.495 rows=1 loops=1) -> Bitmap Heap Scan on jb (actual time=0.245..0.474 rows=285 loops=1) Recheck Cond: (jb @@ '*."term" = "NYC"'::jsquery) Heap Blocks: exact=285 -> Bitmap Index Scan on jb_vodka_idx (actual time=0.214..0.214 rows=285 loops=1) Index Cond: (jb @@ '*."term" = "NYC"'::jsquery) Execution time: 0.526 ms (0.716 ms, GIN jsonb_path_value_ops)
  • 86. CREATE INDEX … USING VODKA set maintenance_work_mem = '1GB'; List of relations Schema | Name | Type | Owner | Table | Size | Description --------+--------------------+-------+----------+-------+---------+------------- public | jr | table | postgres | | 1573 MB | 3023162 rows public | jr_value_path_idx | index | postgres | jr | 196 MB | 79180.120 public | jr_gin_idx | index | postgres | jr | 235 MB | 111814.929 public | jr_path_value_idx | index | postgres | jr | 196 MB | 73369.713 public | jr_path_idx | index | postgres | jr | 180 MB | 48981.307 public | jr_vodka_idx3 | index | postgres | jr | 240 MB | 155714.777 public | jr_vodka_idx4 | index | postgres | jr | 211 MB | 169440.130 new spgist (6 rows) • CITUS data, text and numeric
  • 87. CREATE INDEX … USING VODKA explain (analyze, costs off) select count(*) from jr where jr @@ ' similar_product_ids && ["B000089778"]'; QUERY PLAN ------------------------------------------------------------------------------------------- Aggregate (actual time=0.200..0.200 rows=1 loops=1) -> Bitmap Heap Scan on jr (actual time=0.090..0.183 rows=185 loops=1) Recheck Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery) Heap Blocks: exact=107 -> Bitmap Index Scan on jr_vodka_idx (actual time=0.077..0.077 rows=185 loops=1) Index Cond: (jr @@ '"similar_product_ids" && ["B000089778"]'::jsquery) Execution time: 0.237 ms (0.394 ms, GIN jsonb_path_value_idx) (7 rows)
  • 88. There are can be different flavors of Vodka
  • 90. R-tree fails here — bounding box of each separate spaghetti is the same Spaghetti indexing ...
  • 91. R-tree fails here — bounding box of each separate spaghetti is the same Spaghetti indexing ...
  • 92. Ottawa downtown: York and George streets
  • 95. Summary • contrib/jsquery for 9.4 • Jsquery - Jsonb Query Language • Two GIN opclasses with jsquery support • Grab it from https://github.com/akorotkov/jsquery (branch master) • Prototype of VODKA access method • Plans for improving indexing infrastructure • This work was supported by
  • 96. Another view on VODKA • VODKA CONNECTING INDEXES • composite index, which combines different access methods • Nested search trees
  • 97. postgrespro.ru • Ищем инженеров: • 24x7 поддержка • Консалтинг & аудит • Разработка админских приложений • Пакеты • Ищем си-шников для работы над постгресом: • Неубиваемый и масштабируемый кластер • Хранилища (in-memory, column- storage...)