This document provides an overview of machine learning techniques for classification and anomaly detection. It begins with an introduction to machine learning and common tasks like classification, clustering, and anomaly detection. Basic classification techniques are then discussed, including probabilistic classifiers like Naive Bayes, decision trees, instance-based learning like k-nearest neighbors, and linear classifiers like logistic regression. The document provides examples and comparisons of these different methods. It concludes by discussing anomaly detection and how it differs from classification problems, noting challenges like having few positive examples of anomalies.
Related topics: