SlideShare a Scribd company logo
PythonIntermediateProgramming
임찬식(chanshik@gmail.com)
1
PythonIntermediateProgramming
타입과 객체
함수와함수형프로그래밍
클래스와객체지향프로그래밍
데이터구조
튜닝과 최적화
2
데이터구조
프로그램을작성할때도움이되는효율적인데이터구조모듈소개
array
bisect
collections
itertools
3
abc
abc모듈은새로운추상기반클래스를정의하는데사용하는
메타클래스와장식자한쌍을가지고 있음
ABCMeta
추상기반클래스를나타내는메타클래스
Python3
>>> import abc
>>> class Stackable(metaclass=abc.ABCMeta):
... pass
Python2
class Stackable:
__metaclass__ = abc.ABCMeta
4
abc
추상기반클래스의특징
abstracemethod, abstractproperty 장식자를사용하여
메서드나프로퍼티를정의하면실제구현을제공할경우에만
인스턴스생성가능
어떤타입을논리적하위클래스로등록하는데사용하는클래스메서드
register(subclass) 를가지고 있음
__subclasshook__(cls, subclass) 를추가로정의가능
타입subclass 가 하위클래스로간주되면True
subclass 가 하위클래스가 아니면False
아무런정보가 없을경우NotImplemented예외를발생
5
abc
abstractmethod(method)
method를추상메서드로선언하는장식자
직접상속을통해정의한파생클래스에서실제구현을제공해야
인스턴스생성가능
register() 메서드로등록한하위클래스에는영향없음
abstractproperty(fget [, fset [, fdel[, doc]]])
추상프로퍼티를생성
매개변수들은일반property() 함수와동일
파생클래스에서는해당프로퍼티구현을제공해야인스턴스생성가능
6
abc
추상기반클래스정의
>>> from abc import ABCMeta, abstractmethod, abstractproperty
>>> class Stackable(metaclass=ABCMeta):
... @abstractmethod
... def push(self, item):
... pass
... @abstractmethod
... def pop(self):
... pass
... @abstractproperty
... def size(self):
... pass
7
abc
Stackable을상속하여클래스생성
>>> class Stack(Stackable):
... def __init__(self):
... self.items = []
... def push(self, item):
... self.items.append(item)
... def pop(self):
... return self.items.pop()
...
>>> a = Stack()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Stack with
abstract methods size
size() 프로퍼티가 없어인스턴스를생성할수없음
8
abc
size() 프로퍼티를Stack에서상속받은클래스에추가
>>> class CompleteStack(Stack):
... @property
... def size(self):
... return len(self.items)
...
>>> s = CompleteStack()
>>> s.push("foo")
>>> s.push("bar")
>>> s.size
2
>>> s.pop()
'bar'
9
array
한종류의타입만담는객체. 공간 효율적인자료구조
array(typecode, [, initializer])
타입코드목록
코드 설명 C 타입 크기
'b' 8비트정수 signedchar 1
'B' 8비트부호없는정수 unsignedchar 1
'u' 유니코드문자 PY_UNICODE 2 / 4
'h' 16비트정수 short 2
'H' 16비트부호없는정수 unsignedshort 2
정수형은머신아키텍처에의해결정
10
array
코드 설명 C 타입 크기
'i' 정수 int 4 / 8
'I' 부호없는정수 unsignedint 4 / 8
'l' 긴 정수 long 4 / 8
'L' 부호없는긴 정수 unsignedlong 4 / 8
'q' 더욱긴 정수 longlong 8 (Python3.3)
'Q' 부호없는더욱긴 정수 unsignedlonglong 8 (Python3.3)
'f' 단일정밀도실수 float 4
'd' 배정밀도실수 double 8
11
array
array 객체와생성기 표현식을이용한데이터생성
>>> import array
>>> a = array.array("i", [1, 2, 3, 4, 5])
>>> b = array.array(a.typecode, (x * x for x in a))
>>> a
array('i', [1, 2, 3, 4, 5])
>>> b
array('i', [1, 4, 9, 16, 25])
12
array
enumerate() 함수를이용한제자리(in‑place) 연산을통해
공간을절약하는방식의프로그래밍활용
>>> for i, x in enumerate(a):
... a[i] = x * x
...
>>> a
array('i', [1, 4, 9, 16, 25])
13
bisect
bisect 모듈은리스트를정렬된순서로유지하는데필요한기능제공
bisect(list, item [, low [, high]])
insort(list, item [, low [, high]])
bisect(): list 를정렬된순서로유지하기 위해서item을
list 어디에삽입해야하는지위치반환
insort(): item을list 에정렬된순서에맞게 삽입
item이이미존재하면기존항목오른쪽에삽입
14
bisect
>>> from bisect import bisect
>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> grades[bisect(breakpoints, 50)]
'D'
>>> grades[bisect(breakpoints, 90)]
'A'
15
bisect
>>> from bisect import insort
>>> l = [10, 30, 50, 70]
>>> insort(l, 60)
>>> l
[10, 30, 50, 60, 70]
>>> insort(l, 40)
>>> l
[10, 30, 40, 50, 60, 70]
16
collections
유용한컨테이너타입에대한고성능구현함수와
다양한컨테이너를위한추상기반클래스등을제공
deque
defaultdict
namedtuple
17
deque
양끝을가진객체를나타내는컨테이너
>>> from collections import deque
>>> d = deque('hello')
>>> d.pop()
'o'
>>> d.pop()
'l'
>>> d
deque(['h', 'e', 'l'])
>>> d.append('a')
>>> d.append('b')
>>> d.appendleft('c')
>>> d.appendleft('d')
>>> d
deque(['d', 'c', 'h', 'e', 'l', 'a', 'b'])
>>> d.popleft()
'd'
>>> d.popleft()
'c'
>>> d
deque(['h', 'e', 'l', 'a', 'b'])
18
deque
deque를생성할때maxlen인수를지정하면정해진크기를가진
원형버퍼로동작
새로운항목을추가하는데공간이부족하면반대편에있는항목삭제
deque([1, 2, 3], maxlen=5)
>>> d.append(4)
>>> d.append(5)
>>> d
deque([1, 2, 3, 4, 5], maxlen=5)
>>> d.append(6)
>>> d.append(7)
>>> d
deque([3, 4, 5, 6, 7], maxlen=5)
19
deque
deque는매우효율적인자료구조
뒤쪽끝에항목을추가하는작업은list 보다약간 느림
하지만, 앞쪽에항목을추가하는작업은list 보다매우빠름
deque에새로운항목을추가하는작업은스레드에서도안전
pickle모듈로직렬화가능
20
defaultdict
없는키를처리하는부분을제외하고는dict 와동일
키를찾지못하는경우에default_factory 로지정한함수호출
함수는기본값을생성하고 이값을해당키의값으로사용
defaultdict 객체는데이터를추적하기 위해서
사전을컨테이너로쓸때매우유용
21
defaultdict
>>> from collections import defaultdict
>>> s = "yeah but no but yeah but no but yeah"
>>> words = s.split()
>>> word_locations = defaultdict(list)
>>> for n, w in enumerate(words):
... word_locations[w].append(n)
...
>>> word_locations
defaultdict(<class 'list'>, {'yeah': [0, 4, 8],
'but': [1, 3, 5, 7], 'no': [2, 6]})
22
이름있는튜플
튜플을사용할때불편한점은개별항목을숫자로만접근할수있다는것
이러한불편을줄이기 위해이름있는튜플(namedtuple)을제공
namedtuple(typename, fieldnames [, verbose])
이름이typename인tuple하위클래스생성
fieldnames 는속성이름목록지정
유효한파이썬식별자여야함
튜플에나타날항목과 동일한순서로지정
23
이름있는튜플
>>> from collections import namedtuple
>>> NetworkAddr = namedtuple("NetworkAddr", "hostname port")
>>> a = NetworkAddr("www.python.org", 80)
>>> a.hostname
'www.python.org'
>>> a.port
80
>>> type(a)
<class '__main__.NetworkAddr'>
>>> len(a)
2
>>> isinstance(a, tuple)
True
24
이름있는튜플
이름있는튜플은데이터구조로만사용될객체를정의할때유용
name, shares, price변수를가진데이터구조가 필요할경우
>>> Stock = namedtuple("Stock", "name shares price")
>>> a = Stock("APL", 30, 45.50)
>>> a
Stock(name='APL', shares=30, price=45.5)
25
heapq
heapq 모듈은힙(heap)으로우선순위큐를구현
힙조건에따라정렬된항목들의리스트
heap[0] 은항상가장작은항목을담고 있음
0 에서시작하는모든n에대해서
heap[n] <= heap[2 * n+ 1]
heap[n] <= heap[2 * n+ 2] 모두만족
26
heapq
heapify(x)
리스트x 를제자리에서힙으로변환
heappop(heap)
힙조건을유지하면서가장작은항목을반환하고 제거
힙이비어있으면IndexError 발생
heappush(heap, item)
힙조건을유지하면서item을힙에추가
heappushpop(heap, item)
item을힙에추가하고 힙에서가장작은항목을제거하는
동작을한번에수행
27
heapq
heapreplace(heap, item)
힙에서가장작은아이템을반환하고 제거하면서
새로운항목item을추가
힙이비어있으면IndexError 발생
merge(s1, s2, ...)
정렬된반복가능한객체s1, s2 등을하나의정렬된순서열로생성
nlargest(n, iterable[, key])
iterable에있는가장큰n개의항목으로구성된리스트생성
nsmallest(n, iterable[, key])
iterable에있는가장작은n개의항목으로구성된리스트생성
28
heapq
>>> l = [19, 9, 4, 10, 11, 8, 2]
>>> heapq.heapify(l)
>>> l
[2, 9, 4, 10, 11, 8, 19]
>>> heapq.heappop(l)
2
>>> l
[4, 9, 8, 10, 11, 19]
>>> heapq.heappop(l)
4
>>> l
[8, 9, 19, 10, 11]
>>> heapq.heappush(l, 5)
>>> l
[5, 9, 8, 10, 11, 19]
>>> heapq.heappush(l, 25)
>>> l
[5, 9, 8, 10, 11, 19, 25]
>>>
29
heapq
>>> heapq.nlargest(3, l)
[25, 19, 11]
>>> heapq.nsmallest(3, l)
[5, 8, 9]
>>> a = [3, 5, 1, 9, 7]
>>> b = [6, 4, 8, 2, 10]
>>> heapq.heapify(a)
>>> heapq.heapify(b)
>>> h = heapq.merge(a, b)
>>> h.__next__()
1
>>> h.__next__()
2
>>> h.__next__()
4
>>> h.__next__()
5
30
itertools
itertools 모듈은데이터에대해서다양한본복을수행하는데
사용할수있는효율적인반복자를생성하는함수들을제공
모듈에있는모든함수는for 문이나기타반복자와관련있는
함수와함께사용할수있는반복자를반환
31
chain
chain(iter1, inter2, ..., interN)
반복자그룹이주어질때모든반복자를연결하는새로운반복자생성
>>> for x in chain([1, 2, 3], [4, 5, 6]):
... print(x)
...
1
2
3
4
5
6
32
combinations
combinations(iterable, r)
iterable에서길이r 인모든하위순서열을반환하는반복자생성
>>> list(combinations([1, 2, 3, 4], 2))
[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
>>> list(combinations([1, 2, 3, 4], 3))
[(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
33
count
count([n])
n에서시작하는연속적인정수를만드는반복자생성
n을생략하면0 에서시작
sys.maxint 를넘으면‑sys.maxint ‑ 1 에서다시시작
>>> g = count()
>>> g.__next__()
0
>>> g.__next__()
1
>>> g.__next__()
2
>>> g.__next__()
3
34
cycle
cycle(iterable)
iterable에있는원소들을계속해서순환하는반복자생성
>>> g = cycle([1, 2, 3, 4])
>>> g.__next__()
1
>>> g.__next__()
2
>>> g.__next__()
3
>>> g.__next__()
4
>>> g.__next__()
1
>>> g.__next__()
2
35
dropwhile
dropwhile(predicate, iterable)
함수predicate(item) 이True로평가되는동안
iterable에서항목을버리는반복자생성
일단predicate가 False를반환하면해당항목과
iterable에있는나머지항목이생성
>>> s = [10, 20, -3, 5, 3, 6, -5, 7, 15]
>>> list(dropwhile(lambda x: x >= 0, s))
[-3, 5, 3, 6, -5, 7, 15]
36
groupby
groupby(iterable [, key])
iterable에서생성되는연속적인항목을그룹짓는반복자생성
그룹을짓기 위해중복된항목검색
iterable에서동일한항목이여러번나오면그룹이생성
>>> g = groupby("aaaabbccddeeefffgg")
>>> g.__next__()
('a', <itertools._grouper object at 0x10673cd30>)
>>> g.__next__()
('b', <itertools._grouper object at 0x10673ccf8>)
>>> g.__next__()
('c', <itertools._grouper object at 0x10673ce80>)
37
ifilter (Python3: filter)
ifilter(predicate, iterable)
iterable에서predicate(item) 이True인항목만추출하는반복자생성
predicate가 None이면iterable에있는모든항목이True로평가
>>> s = [10, 15, -3, 5, -6, 7, 15]
>>> g = filter(lambda x: x < 0, s)
>>> list(g)
[-3, -6]
38
ifilterfalse(Python3: filterfalse)
ifilterfalse(predicate, iterable)
iterable에서predicate(item) 이False인항목만추출하는반복자생성
predicate가 None이면iterable에있는모든항목이False로평가
>>> from itertools import filterfalse
>>> s = [10, 15, -3, 5, -6, 7, 15]
>>> g = filterfalse(lambda x: x < 0, s)
>>> list(g)
[10, 15, 5, 7, 15]
39
imap (Python3: map)
imap(function, iter1, iter2, ..., iterN)
function(i1, i2, ..., iN) 들을수행하는반복자생성
>>> a = [1, 2, 4, 10]
>>> b = [5, 10, 15, 20]
>>> m = map(lambda x, y: x + y, a, b)
>>> list(m)
[6, 12, 19, 30]
>>> m = map(lambda x, y: x + y, a, b)
>>> m.__next__()
6
40
islice
islice(iterable, [start,] stop [, step])
iterable[start:stop:step]이반환한것과 비슷한항목을추출하는반복자생성
>>> s = [10, 15, -3, 5, -6, 7, 15]
>>> g = islice(s, 4)
>>> g.__next__()
10
>>> g.__next__()
15
>>> g.__next__()
-3
>>> g.__next__()
5
>>> g.__next__()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
41
izip (Python3: zip)
izip(iter1, iter2, ... iterN)
(iter1, iter2, ..., iterN) 등묶어서사용할수있게 해주는반복자생성
주어진반복자중하나라도값을더이상생성하지않으면반복을멈춤
>>> a = [1, 3, 5, 7]
>>> b = [2, 4, 6, 8]
>>> c = [3, 5, 7]
>>> g = zip(a, b, c)
>>> g.__next__()
(1, 2, 3)
>>> g.__next__()
(3, 4, 5)
>>> g.__next__()
(5, 6, 7)
>>> g.__next__()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
42
izip_longest (Python3: zip_longest)
izip_longest(iter1, iter2, ..., iterN [,fillvalue=None])
반복자iter1, iter2, iterN 등을모두소진할때까지반복이이어진다는것을
제외하고는izip() 과 동일
>>> g = zip_longest(a, b, c)
>>> g.__next__()
(1, 2, 3)
>>> g.__next__()
(3, 4, 5)
>>> g.__next__()
(5, 6, 7)
>>> g.__next__()
(7, 8, None)
>>> g.__next__()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
43
permutaions
permutations(iterable [, r])
iterable에서길이r 인모든순열을반환하는반복자생성
r 을생략하면iterable에있는항목수와동일한길이로가정
>>> a = [1, 3, 5, 7]
>>> permutations(a, 2)
<itertools.permutations object at 0x1066c4f10>
>>> list(permutations(a, 2))
[(1, 3), (1, 5), (1, 7), (3, 1), (3, 5), (3, 7),
(5, 1), (5, 3), (5, 7), (7, 1), (7, 3), (7, 5)]
44
product
product(iter1, iter2, ... iterN [, repeat=1])
iter1, iter2 등에있는항목들의데카르트곱(Cartesianproduct)을
나타내는튜플을만들어내는반복자생성
>>> a = [1, 3, 5, 7]
>>> b = [2, 4]
>>> product(a, b)
<itertools.product object at 0x106742558>
>>> list(product(a, b))
[(1, 2), (1, 4), (3, 2), (3, 4), (5, 2), (5, 4), (7, 2), (
45
repeat
repeat(object [, times])
object 를계속해서만드는반복자를생성
times: 반복횟수(times 가 없으면끝없이반복)
>>> g = repeat([1, 3, 5], 4)
>>> g.__next__()
[1, 3, 5]
>>> g.__next__()
[1, 3, 5]
>>> g.__next__()
[1, 3, 5]
>>> g.__next__()
[1, 3, 5]
>>> g.__next__()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
46
starmap
starmap(func [, iterable)
func(*item) 들을만들어내는반복자생성
item은iterable에서가져옴
func() 을제대로호출할수있는iterable에대해서만제대로동작
>>> g = starmap(lambda a, b: a * b, [(1, 2), (2, 3), (3, 4
>>> g.__next__()
2
>>> g.__next__()
6
>>> g.__next__()
12
>>> g.__next__()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
47
takewhile
takewhile(predicate [, iterable])
predicate(item) 이True로평가되는동안iterable에서항목을추출하는
반복자생성
predicate가 False로평가되는즉시반복을멈춤
>>> s = [10, 15, -3, 5, -6, 7, 15]
>>> g = takewhile(lambda x: x >= 0, s)
>>> g.__next__()
10
>>> g.__next__()
15
>>> g.__next__()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
48
tee
tee(iterable [, n])
iterable에서n개의독립적인반복자생성
생성된반복자들은n개 항목튜플로반환
n: 기본값은2
>>> s = [10, 15, -3, 5, -6, 7, 15]
>>> g = tee(s)
>>> g[0].__next__()
10
>>> g[0].__next__()
15
>>> g[1].__next__()
10
>>> g[1].__next__()
15
49

More Related Content

What's hot (20)

はじめてのElasticsearchクラスタ
はじめてのElasticsearchクラスタはじめてのElasticsearchクラスタ
はじめてのElasticsearchクラスタ
Satoyuki Tsukano
 
Java8移行から始めた技術的負債との戦い(jjug ccc 2015 fall)
Java8移行から始めた技術的負債との戦い(jjug ccc 2015 fall)Java8移行から始めた技術的負債との戦い(jjug ccc 2015 fall)
Java8移行から始めた技術的負債との戦い(jjug ccc 2015 fall)
sogdice
 
객체지향 개념 (쫌 아는체 하기)
객체지향 개념 (쫌 아는체 하기)객체지향 개념 (쫌 아는체 하기)
객체지향 개념 (쫌 아는체 하기)
Seung-June Lee
 
データ履歴管理のためのテンポラルデータモデルとReladomoの紹介 #jjug_ccc #ccc_g3
データ履歴管理のためのテンポラルデータモデルとReladomoの紹介 #jjug_ccc #ccc_g3 データ履歴管理のためのテンポラルデータモデルとReladomoの紹介 #jjug_ccc #ccc_g3
データ履歴管理のためのテンポラルデータモデルとReladomoの紹介 #jjug_ccc #ccc_g3
Hiroshi Ito
 
マイクロサービスにおけるテスト自動化 with Karate
マイクロサービスにおけるテスト自動化 with Karateマイクロサービスにおけるテスト自動化 with Karate
マイクロサービスにおけるテスト自動化 with Karate
Takanori Suzuki
 
自己紹介LT(公開版)
自己紹介LT(公開版)自己紹介LT(公開版)
自己紹介LT(公開版)
Ken Muryoi
 
Keycloakの最近のトピック
Keycloakの最近のトピックKeycloakの最近のトピック
Keycloakの最近のトピック
Hitachi, Ltd. OSS Solution Center.
 
Ppt pengenalan jquery
Ppt pengenalan jqueryPpt pengenalan jquery
Ppt pengenalan jquery
mutia902
 
今からでも遅くないDBマイグレーション - Flyway と SchemaSpy の紹介 -
今からでも遅くないDBマイグレーション - Flyway と SchemaSpy の紹介 -今からでも遅くないDBマイグレーション - Flyway と SchemaSpy の紹介 -
今からでも遅くないDBマイグレーション - Flyway と SchemaSpy の紹介 -
onozaty
 
오픈소스 GIS의 이해 - OSgeo Projects 중심
오픈소스 GIS의 이해 - OSgeo Projects 중심오픈소스 GIS의 이해 - OSgeo Projects 중심
오픈소스 GIS의 이해 - OSgeo Projects 중심
MinPa Lee
 
C++のビルド高速化について
C++のビルド高速化についてC++のビルド高速化について
C++のビルド高速化について
AimingStudy
 
Go静的解析ハンズオン
Go静的解析ハンズオンGo静的解析ハンズオン
Go静的解析ハンズオン
Takuya Ueda
 
P4 perforce
P4 perforceP4 perforce
P4 perforce
Dinesh Vasudevan
 
Spring Security 5.0 解剖速報
Spring Security 5.0 解剖速報Spring Security 5.0 解剖速報
Spring Security 5.0 解剖速報
Takuya Iwatsuka
 
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
NTT DATA Technology & Innovation
 
Istioサービスメッシュ入門
Istioサービスメッシュ入門Istioサービスメッシュ入門
Istioサービスメッシュ入門
Yoichi Kawasaki
 
Docker管理もHinemosで! ~監視・ジョブ機能を併せ持つ唯一のOSS「Hinemos」のご紹介~
Docker管理もHinemosで! ~監視・ジョブ機能を併せ持つ唯一のOSS「Hinemos」のご紹介~Docker管理もHinemosで! ~監視・ジョブ機能を併せ持つ唯一のOSS「Hinemos」のご紹介~
Docker管理もHinemosで! ~監視・ジョブ機能を併せ持つ唯一のOSS「Hinemos」のご紹介~
Hinemos
 
Yahoo!ニュースにおけるBFFパフォーマンスチューニング事例
Yahoo!ニュースにおけるBFFパフォーマンスチューニング事例Yahoo!ニュースにおけるBFFパフォーマンスチューニング事例
Yahoo!ニュースにおけるBFFパフォーマンスチューニング事例
Yahoo!デベロッパーネットワーク
 
FIWARE の ID 管理、アクセス制御、API 管理
FIWARE の ID 管理、アクセス制御、API 管理FIWARE の ID 管理、アクセス制御、API 管理
FIWARE の ID 管理、アクセス制御、API 管理
fisuda
 
[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell
[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell
[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell
Amazon Web Services Japan
 
はじめてのElasticsearchクラスタ
はじめてのElasticsearchクラスタはじめてのElasticsearchクラスタ
はじめてのElasticsearchクラスタ
Satoyuki Tsukano
 
Java8移行から始めた技術的負債との戦い(jjug ccc 2015 fall)
Java8移行から始めた技術的負債との戦い(jjug ccc 2015 fall)Java8移行から始めた技術的負債との戦い(jjug ccc 2015 fall)
Java8移行から始めた技術的負債との戦い(jjug ccc 2015 fall)
sogdice
 
객체지향 개념 (쫌 아는체 하기)
객체지향 개념 (쫌 아는체 하기)객체지향 개념 (쫌 아는체 하기)
객체지향 개념 (쫌 아는체 하기)
Seung-June Lee
 
データ履歴管理のためのテンポラルデータモデルとReladomoの紹介 #jjug_ccc #ccc_g3
データ履歴管理のためのテンポラルデータモデルとReladomoの紹介 #jjug_ccc #ccc_g3 データ履歴管理のためのテンポラルデータモデルとReladomoの紹介 #jjug_ccc #ccc_g3
データ履歴管理のためのテンポラルデータモデルとReladomoの紹介 #jjug_ccc #ccc_g3
Hiroshi Ito
 
マイクロサービスにおけるテスト自動化 with Karate
マイクロサービスにおけるテスト自動化 with Karateマイクロサービスにおけるテスト自動化 with Karate
マイクロサービスにおけるテスト自動化 with Karate
Takanori Suzuki
 
自己紹介LT(公開版)
自己紹介LT(公開版)自己紹介LT(公開版)
自己紹介LT(公開版)
Ken Muryoi
 
Ppt pengenalan jquery
Ppt pengenalan jqueryPpt pengenalan jquery
Ppt pengenalan jquery
mutia902
 
今からでも遅くないDBマイグレーション - Flyway と SchemaSpy の紹介 -
今からでも遅くないDBマイグレーション - Flyway と SchemaSpy の紹介 -今からでも遅くないDBマイグレーション - Flyway と SchemaSpy の紹介 -
今からでも遅くないDBマイグレーション - Flyway と SchemaSpy の紹介 -
onozaty
 
오픈소스 GIS의 이해 - OSgeo Projects 중심
오픈소스 GIS의 이해 - OSgeo Projects 중심오픈소스 GIS의 이해 - OSgeo Projects 중심
오픈소스 GIS의 이해 - OSgeo Projects 중심
MinPa Lee
 
C++のビルド高速化について
C++のビルド高速化についてC++のビルド高速化について
C++のビルド高速化について
AimingStudy
 
Go静的解析ハンズオン
Go静的解析ハンズオンGo静的解析ハンズオン
Go静的解析ハンズオン
Takuya Ueda
 
Spring Security 5.0 解剖速報
Spring Security 5.0 解剖速報Spring Security 5.0 解剖速報
Spring Security 5.0 解剖速報
Takuya Iwatsuka
 
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
入門 Kubeflow ~Kubernetesで機械学習をはじめるために~ (NTT Tech Conference #4 講演資料)
NTT DATA Technology & Innovation
 
Istioサービスメッシュ入門
Istioサービスメッシュ入門Istioサービスメッシュ入門
Istioサービスメッシュ入門
Yoichi Kawasaki
 
Docker管理もHinemosで! ~監視・ジョブ機能を併せ持つ唯一のOSS「Hinemos」のご紹介~
Docker管理もHinemosで! ~監視・ジョブ機能を併せ持つ唯一のOSS「Hinemos」のご紹介~Docker管理もHinemosで! ~監視・ジョブ機能を併せ持つ唯一のOSS「Hinemos」のご紹介~
Docker管理もHinemosで! ~監視・ジョブ機能を併せ持つ唯一のOSS「Hinemos」のご紹介~
Hinemos
 
Yahoo!ニュースにおけるBFFパフォーマンスチューニング事例
Yahoo!ニュースにおけるBFFパフォーマンスチューニング事例Yahoo!ニュースにおけるBFFパフォーマンスチューニング事例
Yahoo!ニュースにおけるBFFパフォーマンスチューニング事例
Yahoo!デベロッパーネットワーク
 
FIWARE の ID 管理、アクセス制御、API 管理
FIWARE の ID 管理、アクセス制御、API 管理FIWARE の ID 管理、アクセス制御、API 管理
FIWARE の ID 管理、アクセス制御、API 管理
fisuda
 
[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell
[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell
[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell
Amazon Web Services Japan
 

Viewers also liked (13)

Python Programming: Tuning and Optimization
Python Programming: Tuning and OptimizationPython Programming: Tuning and Optimization
Python Programming: Tuning and Optimization
Chan Shik Lim
 
Python Programming: Class and Object Oriented Programming
Python Programming: Class and Object Oriented ProgrammingPython Programming: Class and Object Oriented Programming
Python Programming: Class and Object Oriented Programming
Chan Shik Lim
 
Python Programming: Function
Python Programming: FunctionPython Programming: Function
Python Programming: Function
Chan Shik Lim
 
Raspberry Pi를 이용한 얼굴 표정과 감정인식 시스템 개발
Raspberry Pi를 이용한 얼굴 표정과 감정인식 시스템 개발Raspberry Pi를 이용한 얼굴 표정과 감정인식 시스템 개발
Raspberry Pi를 이용한 얼굴 표정과 감정인식 시스템 개발
Hyunmin Kim
 
Python programming for Bioinformatics
Python programming for BioinformaticsPython programming for Bioinformatics
Python programming for Bioinformatics
Hyungyong Kim
 
H3 2011 모바일에서의 Location API 완전정복
H3 2011 모바일에서의 Location API 완전정복H3 2011 모바일에서의 Location API 완전정복
H3 2011 모바일에서의 Location API 완전정복
KTH
 
『고성능 파이썬』 - 맛보기
『고성능 파이썬』 - 맛보기『고성능 파이썬』 - 맛보기
『고성능 파이썬』 - 맛보기
복연 이
 
H3 2011 파이썬으로 클라우드 하고 싶어요
H3 2011 파이썬으로 클라우드 하고 싶어요H3 2011 파이썬으로 클라우드 하고 싶어요
H3 2011 파이썬으로 클라우드 하고 싶어요
KTH
 
Pycon2016 파이썬으로똑똑한주식투자 김대현
Pycon2016 파이썬으로똑똑한주식투자 김대현Pycon2016 파이썬으로똑똑한주식투자 김대현
Pycon2016 파이썬으로똑똑한주식투자 김대현
Daehyun (Damon) Kim
 
파이썬 심화
파이썬 심화파이썬 심화
파이썬 심화
Yong Joon Moon
 
Object-oriented Programming in Python
Object-oriented Programming in PythonObject-oriented Programming in Python
Object-oriented Programming in Python
Juan-Manuel Gimeno
 
금융 데이터 이해와 분석 PyCon 2014
금융 데이터 이해와 분석 PyCon 2014금융 데이터 이해와 분석 PyCon 2014
금융 데이터 이해와 분석 PyCon 2014
Seung-June Lee
 
Python Programming: Type and Object
Python Programming: Type and ObjectPython Programming: Type and Object
Python Programming: Type and Object
Chan Shik Lim
 
Python Programming: Tuning and Optimization
Python Programming: Tuning and OptimizationPython Programming: Tuning and Optimization
Python Programming: Tuning and Optimization
Chan Shik Lim
 
Python Programming: Class and Object Oriented Programming
Python Programming: Class and Object Oriented ProgrammingPython Programming: Class and Object Oriented Programming
Python Programming: Class and Object Oriented Programming
Chan Shik Lim
 
Python Programming: Function
Python Programming: FunctionPython Programming: Function
Python Programming: Function
Chan Shik Lim
 
Raspberry Pi를 이용한 얼굴 표정과 감정인식 시스템 개발
Raspberry Pi를 이용한 얼굴 표정과 감정인식 시스템 개발Raspberry Pi를 이용한 얼굴 표정과 감정인식 시스템 개발
Raspberry Pi를 이용한 얼굴 표정과 감정인식 시스템 개발
Hyunmin Kim
 
Python programming for Bioinformatics
Python programming for BioinformaticsPython programming for Bioinformatics
Python programming for Bioinformatics
Hyungyong Kim
 
H3 2011 모바일에서의 Location API 완전정복
H3 2011 모바일에서의 Location API 완전정복H3 2011 모바일에서의 Location API 완전정복
H3 2011 모바일에서의 Location API 완전정복
KTH
 
『고성능 파이썬』 - 맛보기
『고성능 파이썬』 - 맛보기『고성능 파이썬』 - 맛보기
『고성능 파이썬』 - 맛보기
복연 이
 
H3 2011 파이썬으로 클라우드 하고 싶어요
H3 2011 파이썬으로 클라우드 하고 싶어요H3 2011 파이썬으로 클라우드 하고 싶어요
H3 2011 파이썬으로 클라우드 하고 싶어요
KTH
 
Pycon2016 파이썬으로똑똑한주식투자 김대현
Pycon2016 파이썬으로똑똑한주식투자 김대현Pycon2016 파이썬으로똑똑한주식투자 김대현
Pycon2016 파이썬으로똑똑한주식투자 김대현
Daehyun (Damon) Kim
 
Object-oriented Programming in Python
Object-oriented Programming in PythonObject-oriented Programming in Python
Object-oriented Programming in Python
Juan-Manuel Gimeno
 
금융 데이터 이해와 분석 PyCon 2014
금융 데이터 이해와 분석 PyCon 2014금융 데이터 이해와 분석 PyCon 2014
금융 데이터 이해와 분석 PyCon 2014
Seung-June Lee
 
Python Programming: Type and Object
Python Programming: Type and ObjectPython Programming: Type and Object
Python Programming: Type and Object
Chan Shik Lim
 
Ad

Similar to Python Programming: Data Structure (20)

Python 표준 라이브러리
Python 표준 라이브러리Python 표준 라이브러리
Python 표준 라이브러리
용 최
 
Welcome to python
Welcome to pythonWelcome to python
Welcome to python
Kyunghoon Kim
 
Python basic
Python basic Python basic
Python basic
sewoo lee
 
2020 겨울방학 정기스터디 3주차
2020 겨울방학 정기스터디 3주차2020 겨울방학 정기스터디 3주차
2020 겨울방학 정기스터디 3주차
Moonki Choi
 
Python 내장 함수
Python 내장 함수Python 내장 함수
Python 내장 함수
용 최
 
2020 1학기 정기스터디 2주차
2020 1학기 정기스터디 2주차2020 1학기 정기스터디 2주차
2020 1학기 정기스터디 2주차
Moonki Choi
 
R v01 rprogamming_basic01 (R 프로그래밍 기본)
R v01 rprogamming_basic01 (R 프로그래밍 기본)R v01 rprogamming_basic01 (R 프로그래밍 기본)
R v01 rprogamming_basic01 (R 프로그래밍 기본)
BuskersBu
 
2020 1학기 정기스터디 1주차
2020 1학기 정기스터디 1주차2020 1학기 정기스터디 1주차
2020 1학기 정기스터디 1주차
Moonki Choi
 
Python
PythonPython
Python
대갑 김
 
Bioinformatics Python Programming by HanJoohyun, Jul08, 2019
Bioinformatics Python Programming by HanJoohyun, Jul08, 2019Bioinformatics Python Programming by HanJoohyun, Jul08, 2019
Bioinformatics Python Programming by HanJoohyun, Jul08, 2019
Joohyun Han
 
Code Like Pythonista
Code Like PythonistaCode Like Pythonista
Code Like Pythonista
Chiyoung Song
 
2021 1학기 정기 세미나 2주차
2021 1학기 정기 세미나 2주차2021 1학기 정기 세미나 2주차
2021 1학기 정기 세미나 2주차
Moonki Choi
 
第二讲 Python基礎
第二讲 Python基礎第二讲 Python基礎
第二讲 Python基礎
juzihua1102
 
第二讲 预备-Python基礎
第二讲 预备-Python基礎第二讲 预备-Python基礎
第二讲 预备-Python基礎
anzhong70
 
2021 여름방학 정기 세미나 1주차
2021 여름방학 정기 세미나 1주차2021 여름방학 정기 세미나 1주차
2021 여름방학 정기 세미나 1주차
Moonki Choi
 
ComandosDePython_ComponentesBasicosImpl.ppt
ComandosDePython_ComponentesBasicosImpl.pptComandosDePython_ComponentesBasicosImpl.ppt
ComandosDePython_ComponentesBasicosImpl.ppt
oscarJulianPerdomoCh1
 
Erlang
ErlangErlang
Erlang
HyeonSeok Choi
 
Decision tree and ensemble
Decision tree and ensembleDecision tree and ensemble
Decision tree and ensemble
Danbi Cho
 
Outlier Analysis.pdf
Outlier Analysis.pdfOutlier Analysis.pdf
Outlier Analysis.pdf
H K Yoon
 
Data types
Data typesData types
Data types
Rajesh Kone
 
Python 표준 라이브러리
Python 표준 라이브러리Python 표준 라이브러리
Python 표준 라이브러리
용 최
 
Python basic
Python basic Python basic
Python basic
sewoo lee
 
2020 겨울방학 정기스터디 3주차
2020 겨울방학 정기스터디 3주차2020 겨울방학 정기스터디 3주차
2020 겨울방학 정기스터디 3주차
Moonki Choi
 
Python 내장 함수
Python 내장 함수Python 내장 함수
Python 내장 함수
용 최
 
2020 1학기 정기스터디 2주차
2020 1학기 정기스터디 2주차2020 1학기 정기스터디 2주차
2020 1학기 정기스터디 2주차
Moonki Choi
 
R v01 rprogamming_basic01 (R 프로그래밍 기본)
R v01 rprogamming_basic01 (R 프로그래밍 기본)R v01 rprogamming_basic01 (R 프로그래밍 기본)
R v01 rprogamming_basic01 (R 프로그래밍 기본)
BuskersBu
 
2020 1학기 정기스터디 1주차
2020 1학기 정기스터디 1주차2020 1학기 정기스터디 1주차
2020 1학기 정기스터디 1주차
Moonki Choi
 
Bioinformatics Python Programming by HanJoohyun, Jul08, 2019
Bioinformatics Python Programming by HanJoohyun, Jul08, 2019Bioinformatics Python Programming by HanJoohyun, Jul08, 2019
Bioinformatics Python Programming by HanJoohyun, Jul08, 2019
Joohyun Han
 
Code Like Pythonista
Code Like PythonistaCode Like Pythonista
Code Like Pythonista
Chiyoung Song
 
2021 1학기 정기 세미나 2주차
2021 1학기 정기 세미나 2주차2021 1학기 정기 세미나 2주차
2021 1학기 정기 세미나 2주차
Moonki Choi
 
第二讲 Python基礎
第二讲 Python基礎第二讲 Python基礎
第二讲 Python基礎
juzihua1102
 
第二讲 预备-Python基礎
第二讲 预备-Python基礎第二讲 预备-Python基礎
第二讲 预备-Python基礎
anzhong70
 
2021 여름방학 정기 세미나 1주차
2021 여름방학 정기 세미나 1주차2021 여름방학 정기 세미나 1주차
2021 여름방학 정기 세미나 1주차
Moonki Choi
 
ComandosDePython_ComponentesBasicosImpl.ppt
ComandosDePython_ComponentesBasicosImpl.pptComandosDePython_ComponentesBasicosImpl.ppt
ComandosDePython_ComponentesBasicosImpl.ppt
oscarJulianPerdomoCh1
 
Decision tree and ensemble
Decision tree and ensembleDecision tree and ensemble
Decision tree and ensemble
Danbi Cho
 
Outlier Analysis.pdf
Outlier Analysis.pdfOutlier Analysis.pdf
Outlier Analysis.pdf
H K Yoon
 
Ad

More from Chan Shik Lim (6)

FPV Streaming Server with ffmpeg
FPV Streaming Server with ffmpegFPV Streaming Server with ffmpeg
FPV Streaming Server with ffmpeg
Chan Shik Lim
 
Improving monitoring systems Interoperability with OpenMetrics
Improving monitoring systems Interoperability with OpenMetricsImproving monitoring systems Interoperability with OpenMetrics
Improving monitoring systems Interoperability with OpenMetrics
Chan Shik Lim
 
pgday.seoul 2019: TimescaleDB
pgday.seoul 2019: TimescaleDBpgday.seoul 2019: TimescaleDB
pgday.seoul 2019: TimescaleDB
Chan Shik Lim
 
Kubernetes on Premise Practical Guide
Kubernetes on Premise Practical GuideKubernetes on Premise Practical Guide
Kubernetes on Premise Practical Guide
Chan Shik Lim
 
Kubernetes on Premise
Kubernetes on PremiseKubernetes on Premise
Kubernetes on Premise
Chan Shik Lim
 
Hadoop High Availability Summary
Hadoop High Availability SummaryHadoop High Availability Summary
Hadoop High Availability Summary
Chan Shik Lim
 
FPV Streaming Server with ffmpeg
FPV Streaming Server with ffmpegFPV Streaming Server with ffmpeg
FPV Streaming Server with ffmpeg
Chan Shik Lim
 
Improving monitoring systems Interoperability with OpenMetrics
Improving monitoring systems Interoperability with OpenMetricsImproving monitoring systems Interoperability with OpenMetrics
Improving monitoring systems Interoperability with OpenMetrics
Chan Shik Lim
 
pgday.seoul 2019: TimescaleDB
pgday.seoul 2019: TimescaleDBpgday.seoul 2019: TimescaleDB
pgday.seoul 2019: TimescaleDB
Chan Shik Lim
 
Kubernetes on Premise Practical Guide
Kubernetes on Premise Practical GuideKubernetes on Premise Practical Guide
Kubernetes on Premise Practical Guide
Chan Shik Lim
 
Kubernetes on Premise
Kubernetes on PremiseKubernetes on Premise
Kubernetes on Premise
Chan Shik Lim
 
Hadoop High Availability Summary
Hadoop High Availability SummaryHadoop High Availability Summary
Hadoop High Availability Summary
Chan Shik Lim
 

Recently uploaded (20)

Artificial Intelligence Applications Across Industries
Artificial Intelligence Applications Across IndustriesArtificial Intelligence Applications Across Industries
Artificial Intelligence Applications Across Industries
SandeepKS52
 
OpenTelemetry 101 Cloud Native Barcelona
OpenTelemetry 101 Cloud Native BarcelonaOpenTelemetry 101 Cloud Native Barcelona
OpenTelemetry 101 Cloud Native Barcelona
Imma Valls Bernaus
 
Agentic Techniques in Retrieval-Augmented Generation with Azure AI Search
Agentic Techniques in Retrieval-Augmented Generation with Azure AI SearchAgentic Techniques in Retrieval-Augmented Generation with Azure AI Search
Agentic Techniques in Retrieval-Augmented Generation with Azure AI Search
Maxim Salnikov
 
AI and Deep Learning with NVIDIA Technologies
AI and Deep Learning with NVIDIA TechnologiesAI and Deep Learning with NVIDIA Technologies
AI and Deep Learning with NVIDIA Technologies
SandeepKS52
 
Migrating to Azure Cosmos DB the Right Way
Migrating to Azure Cosmos DB the Right WayMigrating to Azure Cosmos DB the Right Way
Migrating to Azure Cosmos DB the Right Way
Alexander (Alex) Komyagin
 
Generative Artificial Intelligence and its Applications
Generative Artificial Intelligence and its ApplicationsGenerative Artificial Intelligence and its Applications
Generative Artificial Intelligence and its Applications
SandeepKS52
 
Integrating Survey123 and R&H Data Using FME
Integrating Survey123 and R&H Data Using FMEIntegrating Survey123 and R&H Data Using FME
Integrating Survey123 and R&H Data Using FME
Safe Software
 
Essentials of Resource Planning in a Downturn
Essentials of Resource Planning in a DownturnEssentials of Resource Planning in a Downturn
Essentials of Resource Planning in a Downturn
OnePlan Solutions
 
FME for Climate Data: Turning Big Data into Actionable Insights
FME for Climate Data: Turning Big Data into Actionable InsightsFME for Climate Data: Turning Big Data into Actionable Insights
FME for Climate Data: Turning Big Data into Actionable Insights
Safe Software
 
How Insurance Policy Administration Streamlines Policy Lifecycle for Agile Op...
How Insurance Policy Administration Streamlines Policy Lifecycle for Agile Op...How Insurance Policy Administration Streamlines Policy Lifecycle for Agile Op...
How Insurance Policy Administration Streamlines Policy Lifecycle for Agile Op...
Insurance Tech Services
 
Who will create the languages of the future?
Who will create the languages of the future?Who will create the languages of the future?
Who will create the languages of the future?
Jordi Cabot
 
Key AI Technologies Used by Indian Artificial Intelligence Companies
Key AI Technologies Used by Indian Artificial Intelligence CompaniesKey AI Technologies Used by Indian Artificial Intelligence Companies
Key AI Technologies Used by Indian Artificial Intelligence Companies
Mypcot Infotech
 
From Chaos to Clarity - Designing (AI-Ready) APIs with APIOps Cycles
From Chaos to Clarity - Designing (AI-Ready) APIs with APIOps CyclesFrom Chaos to Clarity - Designing (AI-Ready) APIs with APIOps Cycles
From Chaos to Clarity - Designing (AI-Ready) APIs with APIOps Cycles
Marjukka Niinioja
 
Top 11 Fleet Management Software Providers in 2025 (2).pdf
Top 11 Fleet Management Software Providers in 2025 (2).pdfTop 11 Fleet Management Software Providers in 2025 (2).pdf
Top 11 Fleet Management Software Providers in 2025 (2).pdf
Trackobit
 
Software Engineering Process, Notation & Tools Introduction - Part 3
Software Engineering Process, Notation & Tools Introduction - Part 3Software Engineering Process, Notation & Tools Introduction - Part 3
Software Engineering Process, Notation & Tools Introduction - Part 3
Gaurav Sharma
 
How Insurance Policy Management Software Streamlines Operations
How Insurance Policy Management Software Streamlines OperationsHow Insurance Policy Management Software Streamlines Operations
How Insurance Policy Management Software Streamlines Operations
Insurance Tech Services
 
Top 5 Task Management Software to Boost Productivity in 2025
Top 5 Task Management Software to Boost Productivity in 2025Top 5 Task Management Software to Boost Productivity in 2025
Top 5 Task Management Software to Boost Productivity in 2025
Orangescrum
 
dp-700 exam questions sample docume .pdf
dp-700 exam questions sample docume .pdfdp-700 exam questions sample docume .pdf
dp-700 exam questions sample docume .pdf
pravkumarbiz
 
Meet You in the Middle: 1000x Performance for Parquet Queries on PB-Scale Dat...
Meet You in the Middle: 1000x Performance for Parquet Queries on PB-Scale Dat...Meet You in the Middle: 1000x Performance for Parquet Queries on PB-Scale Dat...
Meet You in the Middle: 1000x Performance for Parquet Queries on PB-Scale Dat...
Alluxio, Inc.
 
Agile Software Engineering Methodologies
Agile Software Engineering MethodologiesAgile Software Engineering Methodologies
Agile Software Engineering Methodologies
Gaurav Sharma
 
Artificial Intelligence Applications Across Industries
Artificial Intelligence Applications Across IndustriesArtificial Intelligence Applications Across Industries
Artificial Intelligence Applications Across Industries
SandeepKS52
 
OpenTelemetry 101 Cloud Native Barcelona
OpenTelemetry 101 Cloud Native BarcelonaOpenTelemetry 101 Cloud Native Barcelona
OpenTelemetry 101 Cloud Native Barcelona
Imma Valls Bernaus
 
Agentic Techniques in Retrieval-Augmented Generation with Azure AI Search
Agentic Techniques in Retrieval-Augmented Generation with Azure AI SearchAgentic Techniques in Retrieval-Augmented Generation with Azure AI Search
Agentic Techniques in Retrieval-Augmented Generation with Azure AI Search
Maxim Salnikov
 
AI and Deep Learning with NVIDIA Technologies
AI and Deep Learning with NVIDIA TechnologiesAI and Deep Learning with NVIDIA Technologies
AI and Deep Learning with NVIDIA Technologies
SandeepKS52
 
Generative Artificial Intelligence and its Applications
Generative Artificial Intelligence and its ApplicationsGenerative Artificial Intelligence and its Applications
Generative Artificial Intelligence and its Applications
SandeepKS52
 
Integrating Survey123 and R&H Data Using FME
Integrating Survey123 and R&H Data Using FMEIntegrating Survey123 and R&H Data Using FME
Integrating Survey123 and R&H Data Using FME
Safe Software
 
Essentials of Resource Planning in a Downturn
Essentials of Resource Planning in a DownturnEssentials of Resource Planning in a Downturn
Essentials of Resource Planning in a Downturn
OnePlan Solutions
 
FME for Climate Data: Turning Big Data into Actionable Insights
FME for Climate Data: Turning Big Data into Actionable InsightsFME for Climate Data: Turning Big Data into Actionable Insights
FME for Climate Data: Turning Big Data into Actionable Insights
Safe Software
 
How Insurance Policy Administration Streamlines Policy Lifecycle for Agile Op...
How Insurance Policy Administration Streamlines Policy Lifecycle for Agile Op...How Insurance Policy Administration Streamlines Policy Lifecycle for Agile Op...
How Insurance Policy Administration Streamlines Policy Lifecycle for Agile Op...
Insurance Tech Services
 
Who will create the languages of the future?
Who will create the languages of the future?Who will create the languages of the future?
Who will create the languages of the future?
Jordi Cabot
 
Key AI Technologies Used by Indian Artificial Intelligence Companies
Key AI Technologies Used by Indian Artificial Intelligence CompaniesKey AI Technologies Used by Indian Artificial Intelligence Companies
Key AI Technologies Used by Indian Artificial Intelligence Companies
Mypcot Infotech
 
From Chaos to Clarity - Designing (AI-Ready) APIs with APIOps Cycles
From Chaos to Clarity - Designing (AI-Ready) APIs with APIOps CyclesFrom Chaos to Clarity - Designing (AI-Ready) APIs with APIOps Cycles
From Chaos to Clarity - Designing (AI-Ready) APIs with APIOps Cycles
Marjukka Niinioja
 
Top 11 Fleet Management Software Providers in 2025 (2).pdf
Top 11 Fleet Management Software Providers in 2025 (2).pdfTop 11 Fleet Management Software Providers in 2025 (2).pdf
Top 11 Fleet Management Software Providers in 2025 (2).pdf
Trackobit
 
Software Engineering Process, Notation & Tools Introduction - Part 3
Software Engineering Process, Notation & Tools Introduction - Part 3Software Engineering Process, Notation & Tools Introduction - Part 3
Software Engineering Process, Notation & Tools Introduction - Part 3
Gaurav Sharma
 
How Insurance Policy Management Software Streamlines Operations
How Insurance Policy Management Software Streamlines OperationsHow Insurance Policy Management Software Streamlines Operations
How Insurance Policy Management Software Streamlines Operations
Insurance Tech Services
 
Top 5 Task Management Software to Boost Productivity in 2025
Top 5 Task Management Software to Boost Productivity in 2025Top 5 Task Management Software to Boost Productivity in 2025
Top 5 Task Management Software to Boost Productivity in 2025
Orangescrum
 
dp-700 exam questions sample docume .pdf
dp-700 exam questions sample docume .pdfdp-700 exam questions sample docume .pdf
dp-700 exam questions sample docume .pdf
pravkumarbiz
 
Meet You in the Middle: 1000x Performance for Parquet Queries on PB-Scale Dat...
Meet You in the Middle: 1000x Performance for Parquet Queries on PB-Scale Dat...Meet You in the Middle: 1000x Performance for Parquet Queries on PB-Scale Dat...
Meet You in the Middle: 1000x Performance for Parquet Queries on PB-Scale Dat...
Alluxio, Inc.
 
Agile Software Engineering Methodologies
Agile Software Engineering MethodologiesAgile Software Engineering Methodologies
Agile Software Engineering Methodologies
Gaurav Sharma
 

Python Programming: Data Structure