A Python module is a file containing function and class definitions that can be imported into other Python code. Modules allow code reuse and organization. The import statement is used to import modules so their contents can be accessed, while the from-import statement imports specific attributes. The dir() function returns a list of names defined in a module.
Présentation faite lors d'une réunion du projet animitex à Montpellier en aôut 2014. Cette présentation brosse un apercu des standards du web sémantique disponible sur le web de données. Puis nous introduisons brièvement les travaux de Fabien Amarger sur la transformation de SKOS en ontologie.
YouTube Link: https://youtu.be/QswQA1lRIQY
** Python Certification Training: https://www.edureka.co/python **
This Edureka PPT on 'Collections In Python' will cover the concepts of Collection data type in python along with the collections module and specialized collection data structures like counter, chainmap, deque etc. Following are the topics discussed:
What Are Collections In Python?
What Is A Collection Module In Python?
Specialized Collection Data Structures
Follow us to never miss an update in the future.
YouTube: https://www.youtube.com/user/edurekaIN
Instagram: https://www.instagram.com/edureka_learning/
Facebook: https://www.facebook.com/edurekaIN/
Twitter: https://twitter.com/edurekain
LinkedIn: https://www.linkedin.com/company/edureka
Castbox: https://castbox.fm/networks/505?country=in
We start with why you should use task queues. Then we show a few straightforward examples with Python and Celery and Ruby and Resque.
Finally, we wrap up with a quick example of a task queue in PHP using Redis.
https://github.com/bryanhelmig/phqueue
O documento apresenta uma introdução ao Robot Framework, um framework de automação de testes open source baseado em Python. A palestra discute os conceitos-chave do Robot Framework, incluindo sua arquitetura baseada em keywords, estrutura de arquivos e seções, tipos de testes suportados e como executar testes. Além disso, apresenta exemplos de keywords e bibliotecas comuns utilizadas para testes web.
Object oriented programming with pythonArslan Arshad
A short intro to how Object Oriented Paradigm work in Python Programming language. This presentation created for beginner like bachelor student of Computer Science.
Using OpenNLP with Solr to improve search relevance and to extract named enti...Steve Rowe
Apache OpenNLP can be used with Lucene and Solr to tag words with part-of-speech, produce lemmas (words’ base forms), and to extract named entities: people, places, organizations, etc.
Python lambda functions with filter, map & reduce functionARVIND PANDE
Lambda functions allow the creation of small anonymous functions and can be passed as arguments to other functions. The map() function applies a lambda function to each element of a list and returns a new list. The filter() function filters a list based on the return value of a lambda function. The reduce() function iteratively applies a lambda function to consecutive pairs in a list and returns a single value. User-defined functions in Python can perform tasks like converting between temperature scales, finding max/min/average of lists, generating Fibonacci series, reversing strings, summing digits in numbers, and calculating powers using recursion.
Regular expressions are a powerful tool for searching, matching, and parsing text patterns. They allow complex text patterns to be matched with a standardized syntax. All modern programming languages include regular expression libraries. Regular expressions can be used to search strings, replace parts of strings, split strings, and find all occurrences of a pattern in a string. They are useful for tasks like validating formats, parsing text, and finding/replacing text. This document provides examples of common regular expression patterns and methods for using regular expressions in Python.
This document provides an overview of NumPy arrays in 3 paragraphs. It begins by introducing NumPy as the core library for scientific computing in Python that consists of multidimensional array objects. The second paragraph describes one-dimensional and two-dimensional NumPy arrays, how to create them using functions like array(), and basic operations like slicing and joining arrays. The third paragraph covers various arithmetic operations that can be performed on one-dimensional and two-dimensional arrays like addition, subtraction, multiplication, and division.
What is Tuple in python? | Python Tuple Tutorial | EdurekaEdureka!
YouTube Link: https://youtu.be/GstQPTWpt88
** Python Certification Training: https://www.edureka.co/data-science-python-certification-course **
This Edureka video on 'Tuple In Python' will help you understand how we can use Tuple in Python with various examples for better understanding. Following are the topics discussed:
What Is Tuple In Python?
Accessing Elements In A Tuple
Changing A Tuple
Concatenating Two Tuples
Deleting A Tuple
Tuple Methods
List vs Tuple
Tuple Constructor
Other Examples
Follow us to never miss an update in the future.
YouTube: https://www.youtube.com/user/edurekaIN
Instagram: https://www.instagram.com/edureka_learning/
Facebook: https://www.facebook.com/edurekaIN/
Twitter: https://twitter.com/edurekain
LinkedIn: https://www.linkedin.com/company/edureka
Castbox: https://castbox.fm/networks/505?country=in
Introduction to Prolog (PROramming in LOGic)Ahmed Gad
As part of artificial intelligence course given in faculty of computers and information, Prolog was the first tool to make intelligent decisions like making relations between different objects.
Prolog has a strong history in AI starting in 1972 as a logic programming language that solves problems by logic.
Prolog is a general-purpose logic programming language associated with artificial intelligence and computational linguistics. Prolog has its roots in first-order logic, a formal logic, and unlike many other programming languages, Prolog is declarative: the program logic is expressed in terms of relations, represented as facts and rules. A computation is initiated by running a query over these relations. The language was first conceived by a group around Alain Colmerauer in Marseille, France, in the early 1970s and the first Prolog system was developed in 1972 by Colmerauer with Philippe Roussel. Prolog was one of the first logic programming languages, and remains the most popular among such languages today, with several free and commercial implementations available. The language has been used for theorem proving, expert systems, type inference systems, and automated planning, as well as its original intended field of use, natural language processing. Modern Prolog environments support creating graphical user interfaces, as well as administrative and networked applications. Prolog is well-suited for specific tasks that benefit from rule-based logical queries such as searching databases, voice control systems, and filling templates.
Find me on:
AFCIT
http://www.afcit.xyz
YouTube
https://www.youtube.com/channel/UCuewOYbBXH5gwhfOrQOZOdw
Google Plus
https://plus.google.com/u/0/+AhmedGadIT
SlideShare
https://www.slideshare.net/AhmedGadFCIT
LinkedIn
https://www.linkedin.com/in/ahmedfgad/
ResearchGate
https://www.researchgate.net/profile/Ahmed_Gad13
Academia
https://www.academia.edu/
Google Scholar
https://scholar.google.com.eg/citations?user=r07tjocAAAAJ&hl=en
Mendelay
https://www.mendeley.com/profiles/ahmed-gad12/
ORCID
https://orcid.org/0000-0003-1978-8574
StackOverFlow
http://stackoverflow.com/users/5426539/ahmed-gad
Twitter
https://twitter.com/ahmedfgad
Facebook
https://www.facebook.com/ahmed.f.gadd
Pinterest
https://www.pinterest.com/ahmedfgad/
Python is a widely-used and powerful computer programming language that has helped system administrators manage computer networks and problem solve computer systems for decades. Python has also built some popular applications like BitTorrent, Blender, Calibre, Dropbox, and much more. Going further, the “Pi” in Raspberry Pi stands for Python, so learning Python will instill more confidence when working with Raspberry Pi projects. Python is usually the first programming language people learn primarily because it is easy to learn and provides a solid foundation to learn other computer programming languages. In this webinar,
• Learn what Python is and what it is capable of doing.
• Install Python’s IDE for Windows and work in the Python shell.
• Use calculations, variables, strings, lists, and if statements.
• Discover Python’s built-in functions and understand modules.
• Create simple programs to build on later.
The recording is available at https://youtu.be/ThcWmJFf-ho.
The document is about Python's datetime module. It introduces the module and the key classes it contains for manipulating dates and times, including Date, Time, and DateTime objects. It shows how to create datetime objects from these classes, extract attributes like year and hour, and perform operations like adding or subtracting days to manipulate dates. Examples are provided demonstrating common datetime tasks in Python like printing dates in different formats, finding today's date, and comparing datetime objects.
We start with why you should use task queues. Then we show a few straightforward examples with Python and Celery and Ruby and Resque.
Finally, we wrap up with a quick example of a task queue in PHP using Redis.
https://github.com/bryanhelmig/phqueue
O documento apresenta uma introdução ao Robot Framework, um framework de automação de testes open source baseado em Python. A palestra discute os conceitos-chave do Robot Framework, incluindo sua arquitetura baseada em keywords, estrutura de arquivos e seções, tipos de testes suportados e como executar testes. Além disso, apresenta exemplos de keywords e bibliotecas comuns utilizadas para testes web.
Object oriented programming with pythonArslan Arshad
A short intro to how Object Oriented Paradigm work in Python Programming language. This presentation created for beginner like bachelor student of Computer Science.
Using OpenNLP with Solr to improve search relevance and to extract named enti...Steve Rowe
Apache OpenNLP can be used with Lucene and Solr to tag words with part-of-speech, produce lemmas (words’ base forms), and to extract named entities: people, places, organizations, etc.
Python lambda functions with filter, map & reduce functionARVIND PANDE
Lambda functions allow the creation of small anonymous functions and can be passed as arguments to other functions. The map() function applies a lambda function to each element of a list and returns a new list. The filter() function filters a list based on the return value of a lambda function. The reduce() function iteratively applies a lambda function to consecutive pairs in a list and returns a single value. User-defined functions in Python can perform tasks like converting between temperature scales, finding max/min/average of lists, generating Fibonacci series, reversing strings, summing digits in numbers, and calculating powers using recursion.
Regular expressions are a powerful tool for searching, matching, and parsing text patterns. They allow complex text patterns to be matched with a standardized syntax. All modern programming languages include regular expression libraries. Regular expressions can be used to search strings, replace parts of strings, split strings, and find all occurrences of a pattern in a string. They are useful for tasks like validating formats, parsing text, and finding/replacing text. This document provides examples of common regular expression patterns and methods for using regular expressions in Python.
This document provides an overview of NumPy arrays in 3 paragraphs. It begins by introducing NumPy as the core library for scientific computing in Python that consists of multidimensional array objects. The second paragraph describes one-dimensional and two-dimensional NumPy arrays, how to create them using functions like array(), and basic operations like slicing and joining arrays. The third paragraph covers various arithmetic operations that can be performed on one-dimensional and two-dimensional arrays like addition, subtraction, multiplication, and division.
What is Tuple in python? | Python Tuple Tutorial | EdurekaEdureka!
YouTube Link: https://youtu.be/GstQPTWpt88
** Python Certification Training: https://www.edureka.co/data-science-python-certification-course **
This Edureka video on 'Tuple In Python' will help you understand how we can use Tuple in Python with various examples for better understanding. Following are the topics discussed:
What Is Tuple In Python?
Accessing Elements In A Tuple
Changing A Tuple
Concatenating Two Tuples
Deleting A Tuple
Tuple Methods
List vs Tuple
Tuple Constructor
Other Examples
Follow us to never miss an update in the future.
YouTube: https://www.youtube.com/user/edurekaIN
Instagram: https://www.instagram.com/edureka_learning/
Facebook: https://www.facebook.com/edurekaIN/
Twitter: https://twitter.com/edurekain
LinkedIn: https://www.linkedin.com/company/edureka
Castbox: https://castbox.fm/networks/505?country=in
Introduction to Prolog (PROramming in LOGic)Ahmed Gad
As part of artificial intelligence course given in faculty of computers and information, Prolog was the first tool to make intelligent decisions like making relations between different objects.
Prolog has a strong history in AI starting in 1972 as a logic programming language that solves problems by logic.
Prolog is a general-purpose logic programming language associated with artificial intelligence and computational linguistics. Prolog has its roots in first-order logic, a formal logic, and unlike many other programming languages, Prolog is declarative: the program logic is expressed in terms of relations, represented as facts and rules. A computation is initiated by running a query over these relations. The language was first conceived by a group around Alain Colmerauer in Marseille, France, in the early 1970s and the first Prolog system was developed in 1972 by Colmerauer with Philippe Roussel. Prolog was one of the first logic programming languages, and remains the most popular among such languages today, with several free and commercial implementations available. The language has been used for theorem proving, expert systems, type inference systems, and automated planning, as well as its original intended field of use, natural language processing. Modern Prolog environments support creating graphical user interfaces, as well as administrative and networked applications. Prolog is well-suited for specific tasks that benefit from rule-based logical queries such as searching databases, voice control systems, and filling templates.
Find me on:
AFCIT
http://www.afcit.xyz
YouTube
https://www.youtube.com/channel/UCuewOYbBXH5gwhfOrQOZOdw
Google Plus
https://plus.google.com/u/0/+AhmedGadIT
SlideShare
https://www.slideshare.net/AhmedGadFCIT
LinkedIn
https://www.linkedin.com/in/ahmedfgad/
ResearchGate
https://www.researchgate.net/profile/Ahmed_Gad13
Academia
https://www.academia.edu/
Google Scholar
https://scholar.google.com.eg/citations?user=r07tjocAAAAJ&hl=en
Mendelay
https://www.mendeley.com/profiles/ahmed-gad12/
ORCID
https://orcid.org/0000-0003-1978-8574
StackOverFlow
http://stackoverflow.com/users/5426539/ahmed-gad
Twitter
https://twitter.com/ahmedfgad
Facebook
https://www.facebook.com/ahmed.f.gadd
Pinterest
https://www.pinterest.com/ahmedfgad/
Python is a widely-used and powerful computer programming language that has helped system administrators manage computer networks and problem solve computer systems for decades. Python has also built some popular applications like BitTorrent, Blender, Calibre, Dropbox, and much more. Going further, the “Pi” in Raspberry Pi stands for Python, so learning Python will instill more confidence when working with Raspberry Pi projects. Python is usually the first programming language people learn primarily because it is easy to learn and provides a solid foundation to learn other computer programming languages. In this webinar,
• Learn what Python is and what it is capable of doing.
• Install Python’s IDE for Windows and work in the Python shell.
• Use calculations, variables, strings, lists, and if statements.
• Discover Python’s built-in functions and understand modules.
• Create simple programs to build on later.
The recording is available at https://youtu.be/ThcWmJFf-ho.
The document is about Python's datetime module. It introduces the module and the key classes it contains for manipulating dates and times, including Date, Time, and DateTime objects. It shows how to create datetime objects from these classes, extract attributes like year and hour, and perform operations like adding or subtracting days to manipulate dates. Examples are provided demonstrating common datetime tasks in Python like printing dates in different formats, finding today's date, and comparing datetime objects.
파이썬 데이터과학 레벨2 - 데이터 시각화와 실전 데이터분석, 그리고 머신러닝 입문 (2020년 이태영)Tae Young Lee
파이썬 데이터과학 레벨2 - 데이터 시각화와 실전 데이터분석, 그리고 머신러닝 입문 (2020년 이태영)
- 코스피 LG유플러스 주가분석, 대한민국 부동산 분석, 강남 아파트 매매 분석, VISA 보고서 분석, 워드클라우드 등
- 국내 어떤 책에서도 다루지 않는 진짜 데이터분석 강의
- (귀차니즘에..) 소수 금융권/대기업/공기업에게만 강의된 자료
[PyCon KR 2018] 땀내를 줄이는 Data와 Feature 다루기Joeun Park
서울 코엑스에서 진행된 파이콘 한국 2018에서 8월 19일에 발표한 내용입니다.
데이터 전처리와 Feature Engineering에 대해 다룹니다.
[파이콘 한국 2018 프로그램 | 땀내를 줄이는 Data와 Feature 다루기](https://www.pycon.kr/2018/program/47)
이 발표내용은 8월 17일 금요일에 진행되었던 다음 2개의 튜토리얼을 바탕으로 작성되었습니다.
* [공공데이터로 파이썬 데이터 분석 입문하기(3시간) — 파이콘 한국 2018](https://www.pycon.kr/2018/program/tutorial/6)
* [청와대 국민청원 데이터로 파이썬 자연어처리 입문하기(3시간) — 파이콘 한국 2018](https://www.pycon.kr/2018/program/tutorial/7)
"R을 이용한 데이터 처리 & 분석 실무 - 서민구 지음" 정리 자료 #1
- https://thebook.io/006723/
- 첫번째 : goo.gl/FJjOlq
- 두번째 : goo.gl/Wdb90g
- 세번째 : goo.gl/80VGcn
- 네번째 : goo.gl/lblUsR
2. 6. Pandas 모듈 기초
7. Pandas Series/ DataFrame
기초
8.Pandas series/dataframe
공통메소드
9. Pandas index class
10.Pandas groupby 처리
11. Pandas panel(3차원)
목차
2
6. 1차원의 데이터를 관리하는 컨테이너이면 dict 타
입처럼 index와 value가 항상 연계되어 처리
6
Series 구조 : 1차원
index
0
1
2
data: 실제 데이터 값
index : 데이터를 접근할 정보
index.name으로 index도
name을 지정할 수 있음
dtypes : 데이터들의 타입
name : Series 인스턴스의 이름
values
dtypes
7. 1차원의 데이터를 관리하는 컨터이너이며 index
등을 별도로 정의할 수 있음
7
Series 구조 생성
8. Series 인스턴스들이 DataFrame의 칼럼으로 들
어가는 구조 columns는 series 명이 되어야 하고
index는 series의 index로 처리
8
DataFrame 구조: 2차원
Index(행)
Column(열)
col1 col2 col3
row1row2row3
index
0
1
2
values
dtype
name
index
0
1
2
values
dtype
name
index
0
1
2
values
dtype
name
Series에서
DataFrame
전환
9. n*m 행렬구조를 가지는 데이터 구조이고 index
와 column이 별도의 명을 가지고, column별로
다른 데이터 타입을 가질 수 있음
9
DataFrame 생성
Index(행)
Column(열)
col1 col2 col3
row1row2row3
10. 3차원의 데이터를 관리하는 컨테이너
10
Panel 구조 : 3차원
index
item0
item1
data
Index(행)
Column(열)
col1 col2 col3
row1row2row3
DataFrame
Index(행)
Column(열)
col1 col2 col3
row1row2row3
data = {'Item1' : pd.DataFrame(np.random.randn(3, 3)),
'Item2' : pd.DataFrame(np.random.randn(3, 3))}
pd.Panel(data)
12. [ ] 연사자 내의 숫자는 마지막을 포함하지 않지
만 문자일 경우 마지막 값도 처리
12
슬라이싱 처리시 숫자와 문자
[0,0] [0,1] [0,2]
Row : 행
Column: 열
0
0 1 2
[0,0] [0,1] [0,2]
Column: 열
0
a b c
숫자로 조회 문자로 조회
13. [ ] 연산자로 원소값(scalar) 및 일차원(Series) 조
회
13
원소값, 일차원
[0,0]
Row : 행
Column: 열
[0,0] [0,1] [0,2]
Row : 행
Column: 열
0
0 1 2
16. labels, names으로 분리해서 접근할 수 있는 정보
를 관리
16
Index에 대한 객체화
Index(행)
Column(열)
col1 col2 col3
row1row2row3
labels
names
Index에 대한 위치관리
Levels에 대한 명
labels
names
Column 에 대한 위치관리
Levels에 대한 명
Index(행) Column(열)
17. Levels, labels, names으로 분리해서 접근할 수 있
는 정보를 관리
17
multiIndex에 대한 객체화
Index(행)
Column(열)
col1 col2 col3
row1row2row3
levels
labels
names
Index에 대한 이름관리
Index에 대한 위치관리
Levels에 대한 명
levels
labels
names
Column 에 대한 이름관리
Column 에 대한 위치관리
Levels에 대한 명
Index(행) Column(열)
row1row2row3
col1 col2 col3
35. n*m 행렬구조를 가지는 데이터 구조 생성
35
DataFrame 생성
class DataFrame(pandas.core.generic.NDFrame)
| 2차원 행렬
| Parameters
| ----------
| data : numpy.ndarray ,dict, or DataFrame
| dict can contain Series, arrays, constants, or list-like objects
| index : Index or array-like
| 행에 대한 정보 기본은 np.arange(n), 명칭도 부여 가능
| columns : Index or array-like
행에 대한 정보 기본은 np.arange(n), 명칭도 부여 가능
| dtype : dtype, default None
| Data type to force, otherwise infer
| copy : boolean, default False
| Copy data from inputs. Only affects DataFrame / 2d ndarray input
36. Series로 DataFrame를 생성하고 하나의 칼럼을 조회
해 보면 Series 타입으로 조회 되고 DataFrame의
values는 ndarray으로 2차원으로 관리
36
DataFrame 내부 data type
37. DataFrame 는 value 값을 ndarray와 index를
Index 타입으로 구성
37
DataFrame 내부 data type
76. 하나의 칼럼을 기준으로 group화해서 칼럼들에
대한 연산 처리
76
Groupby
letter one two
0 a 1 2
1 a 1 2
2 b 1 2
3 b 1 2
4 c 1 2
one two
letter
a 2 4
b 2 4
c 1 2
letter one two
0 a 1 2
1 a 1 2
2 b 1 2
3 b 1 2
4 c 1 2
two
letter one
a 1 4
b 1 4
c 1 2
78. Apply 메소드는 내부 함수를 모든 원소에 대해 계
산을 처리함
78
Dataframe 모든 원소에 적용
Index(행)
Column(열)
col1 col2 col3
row1row2row3
df.apply(func)
Apply 메소드
func(df 원소값)을 넣어 전체 값
을 전환
Index(행)
Column(열)
col1 col2 col3
row1row2row3
85. Index는 index, 원소는 values에 보관됨
85
Series 구조 속성 1
변수 설명
name Series 인스턴스에 대한 이름
shape DataFrame의 행렬 형태를 표시
dtypes 행과 열에 대한 데이터 타입을 표시
ndim 차원에 대한 정보 표시
strides 데이터를 구성하는 총 갯수
index 생성된 행에 대한 index 표시
values 실제 data를 Numpy 로 변환
86. 원소의 개수는 타입 등 추가 정보를 보관
86
Series 구조 속성 2
변수 설명
size 원소들의 갯수
ftypes
Return the ftypes (indication of sparse/dense and
dtype) in this object.
axes 행과 열에 대한 축을 접근 표시
empty 내부가 없으면 True 원소가 있으면 False
base
기본 데이터의 메모리를 공유하는 경우에는 기본
객체를 반환
87. Axes(축)은 Index클래스에 대한 정보를 가지고
있고, index(0)에 대한 labels구성에 대한 축을 관
리
87
attribute : axes
106. empty, ftypes에 대한 속성 값들을 확인
106
attribute : empty, ftypes
변수 설명
ftypes
Return the ftypes (indication of sparse/d
ense and dtype) in this object.
empty
DataFrame 내부가 없으면 True 원소가
있으면 False
107. size, values, T에 대한 속성 값들을 확인
107
attribute : size, values, T
변수 설명
size 원소들의 갯수
values Numpy 로 변환
T 행과 열을 변환
108. Axes(축)은 Index클래스에 대한 정보를 가지고
있고, index(0)/ columns(1)에 대한 labels구성에
대한 축을 관리
108
attribute : axes