SlideShare a Scribd company logo
r-squared
Slide 1 www.r-squared.in/rprogramming
R Programming
Learn the fundamentals of data analysis with R.
r-squared
Slide 2
Course Modules
www.r-squared.in/rprogramming
✓ Introduction
✓ Elementary Programming
✓ Working With Data
✓ Selection Statements
✓ Loops
✓ Functions
✓ Debugging
✓ Unit Testing
r-squared
Slide 3
Working With Data
www.r-squared.in/rprogramming
✓ Data Types
✓ Data Structures
✓ Data Creation
✓ Data Info
✓ Data Subsetting
✓ Comparing R Objects
✓ Importing Data
✓ Exporting Data
✓ Data Transformation
✓ Numeric Functions
✓ String Functions
✓ Mathematical Functions
r-squared
In this unit, we will explore the following numeric functions:
Slide 4
Numeric Functions
www.r-squared.in/rprogramming
● signif()
● jitter()
● format()
● formatC()
● abs()
● round()
● ceiling()
● floor()
r-squared
Slide 5
abs()
www.r-squared.in/rprogramming
Description
abs() computes the absolute values of its arguments.
Syntax
abs(x)
Returns
Absolute value
Documentation
help(abs)
r-squared
Slide 6
abs()
www.r-squared.in/rprogramming
Examples
> # example 1
> x <- -5
> abs(x)
[1] 5
> # example 2
> y <- 5
> abs(y)
[1] 5
> # example 3
> z <- c(1, -3, 4, -7, 5, -9)
> abs(z)
[1] 1 3 4 7 5 9
r-squared
Slide 7
round()
www.r-squared.in/rprogramming
Description
round() rounds its argument to the specified number of decimal places.
Syntax
round(x, digits)
Returns
Argument rounded to specified number of decimal places.
Documentation
help(round)
r-squared
Slide 8
round()
www.r-squared.in/rprogramming
Examples
> # example 1
> x <- 5.3645
> round(x) # zero decimal values
[1] 5
> round(x, digits = 1) # one decimal values
[1] 5.4
> round(x, digits = 2) # two decimal values
[1] 5.36
> round(x, digits = 3) # three decimal values
[1] 5.364
r-squared
Slide 9
ceiling()
www.r-squared.in/rprogramming
Description
ceiling() takes a numeric argument x and returns the smallest integer not less than x.
Syntax
ceiling(x)
Returns
Integer
Documentation
help(ceiling)
r-squared
Slide 10
ceiling()
www.r-squared.in/rprogramming
Examples
> example 1
> x <- 5.3645
> ceiling(x)
[1] 6
> example 2
> x <- 3.94
> ceiling(x)
[1] 4
> example 3
> x
[1] 7.012865 8.148132 9.840098 2.965393 2.098276 6.139226 3.819461 8.849482 1.068249
[10] 5.105874
> ceiling(x)
[1] 8 9 10 3 3 7 4 9 2 6
r-squared
Slide 11
floor()
www.r-squared.in/rprogramming
Description
floor() takes a numeric argument x and returns the smallest integer not greater than x.
Syntax
floor(..., collapse = NULL)
Returns
Integer
Documentation
help(floor)
r-squared
Slide 12
floor()
www.r-squared.in/rprogramming
Examples
> # example 1
> x <- 5.3645
> floor(x)
[1] 5
> # example 2
> x <- 3.94
> floor(x)
[1] 3
> # example 3
> x <- sample(jitter(1:10))
> x
[1] 6.1581438 9.9260513 0.9823364 4.1083687 4.9102557 8.1316709 7.0094556 2.8870083
[9] 2.1403249 9.0941759
> floor(x)
[1] 6 9 0 4 4 8 7 2 2 9
r-squared
Slide 13
trunc()
www.r-squared.in/rprogramming
Description
trunc() takes a numeric argument and returns the first integer as the values is truncated
towards zero.
Syntax
trunc(x)
Returns
Integer
Documentation
help(trunc)
r-squared
Slide 14
trunc()
www.r-squared.in/rprogramming
Examples
> # example 1
> x <- 5.3645
> trunc(x)
[1] 5
# as we truncate the value in x towards zero, the first integer that appears is 5.
> # example 2
> x <- -3.94
> trunc(x)
[1] -3
> round(x)
[1] -4
> floor(x)
[1] -4
# as we truncate the value in x towards zero, the first integer that appears is -3.
r-squared
Slide 15
signif()
www.r-squared.in/rprogramming
Description
signif() rounds the value in the first argument to the specified number of significant
digits.
Syntax
signif(x, digits)
Returns
Value with specified number of significant digits
Documentation
help(signif)
r-squared
Slide 16
signif()
www.r-squared.in/rprogramming
Examples
> # example
> x <- 5.3645
> signif(x, 1)
[1] 5
> signif(x, 2)
[1] 5.4
> signif(x, 3)
[1] 5.36
r-squared
Slide 17
jitter()
www.r-squared.in/rprogramming
Description
jitter() add noise to a numeric vector.
Syntax
jitter(numeric_vector)
Returns
Numeric vector with noise
Documentation
help(jitter)
r-squared
Slide 18
jitter()
www.r-squared.in/rprogramming
Examples
> # example 1
> x <- 1:10
> x
[1] 1 2 3 4 5 6 7 8 9 10
> jitter(x)
[1] 1.198246 1.845626 3.171562 3.809923 5.188604 6.171728 7.022194 8.058092
[9] 9.150582 10.142704
r-squared
Slide 19
format()
www.r-squared.in/rprogramming
Description
format() will format an R object for pretty printing.
Syntax
format(x, digits, nsmall, justify)
Returns
Formatted object
Documentation
help(format)
r-squared
Slide 20
format()
www.r-squared.in/rprogramming
Examples
> # example 1
> x
[1] 1.187272 2.080868 3.197517 4.016246 4.979482 6.163807 6.837692 8.013903 8.864735
[10] 9.939144
> format(x, digits = 3)
[1] "1.19" "2.08" "3.20" "4.02" "4.98" "6.16" "6.84" "8.01" "8.86" "9.94"
> # example 2
> x <- 1:10
> format(x)
[1] " 1" " 2" " 3" " 4" " 5" " 6" " 7" " 8" " 9" "10"
> format(x, trim = TRUE)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
r-squared
Slide 21
format()
www.r-squared.in/rprogramming
Examples
> # example 3
> format(6.5)
[1] "6.5"
> format(6.5, nsmall = 3)
[1] "6.500"
> format(c(6.5, 15.3), digits = 2)
[1] " 6.5" "15.3"
> format(c(6.5, 15.3), digits = 2, nsmall = 1)
[1] " 6.5" "15.3"
r-squared
Slide 22
formatC()
www.r-squared.in/rprogramming
Description
formatC() formats numbers individually and flexibly.
Syntax
formatC(x, digits, width)
Returns
Formatted object
Documentation
help(formatC)
r-squared
Slide 23
formatC()
www.r-squared.in/rprogramming
Examples
> # example 1
> x <- 1:10
> formatC(x)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
> formatC(x, width = 6)
[1] " 1" " 2" " 3" " 4" " 5" " 6" " 7" " 8" " 9"
[10] " 10"
> # example 2
> x <- sample(jitter(1:10))
> x
[1] 7.0094486 0.9592379 5.8403164 8.8848952 4.9665959 9.9507841 3.1295332 7.8283830
[9] 2.1360850 3.8991551
> formatC(x, digits = 4)
[1] "7.009" "0.9592" " 5.84" "8.885" "4.967" "9.951" " 3.13" "7.828" "2.136"
[10] "3.899"
r-squared
In the next unit, we will explore string manipulation in R using the following functions:
Slide 24
Next Steps...
www.r-squared.in/rprogramming
● match()
● char.expand()
● grep()
● grepl()
● sub()
● substr()
● substring()
● strsplit()
● strtrim()
● chartr()
● tolower()
● toupper()
● toString()
● nchar()
● nzchar()
● noquote()
● pmatch()
● charmatch()
r-squared
Slide 25
Connect With Us
www.r-squared.in/rprogramming
Visit r-squared for tutorials
on:
● R Programming
● Business Analytics
● Data Visualization
● Web Applications
● Package Development
● Git & GitHub
Ad

Recommended

R Programming: Transform/Reshape Data In R
R Programming: Transform/Reshape Data In R
Rsquared Academy
 
A quick introduction to R
A quick introduction to R
Angshuman Saha
 
R Programming: Learn To Manipulate Strings In R
R Programming: Learn To Manipulate Strings In R
Rsquared Academy
 
R Programming: Export/Output Data In R
R Programming: Export/Output Data In R
Rsquared Academy
 
RMySQL Tutorial For Beginners
RMySQL Tutorial For Beginners
Rsquared Academy
 
R Programming: Importing Data In R
R Programming: Importing Data In R
Rsquared Academy
 
4 R Tutorial DPLYR Apply Function
4 R Tutorial DPLYR Apply Function
Sakthi Dasans
 
Data Visualization With R: Learn To Modify Title, Axis Labels & Range
Data Visualization With R: Learn To Modify Title, Axis Labels & Range
Rsquared Academy
 
Sparklyr
Sparklyr
Dieudonne Nahigombeye
 
Data transformation-cheatsheet
Data transformation-cheatsheet
Dieudonne Nahigombeye
 
Stata cheat sheet: data processing
Stata cheat sheet: data processing
Tim Essam
 
Stata Programming Cheat Sheet
Stata Programming Cheat Sheet
Laura Hughes
 
Data import-cheatsheet
Data import-cheatsheet
Dieudonne Nahigombeye
 
Stata cheatsheet transformation
Stata cheatsheet transformation
Laura Hughes
 
Stata cheat sheet: data transformation
Stata cheat sheet: data transformation
Tim Essam
 
Hive function-cheat-sheet
Hive function-cheat-sheet
Dr. Volkan OBAN
 
Dplyr and Plyr
Dplyr and Plyr
Paul Richards
 
Arrays in SAS
Arrays in SAS
guest2160992
 
R factors
R factors
Learnbay Datascience
 
Introduction to data.table in R
Introduction to data.table in R
Paul Richards
 
Data Management in Python
Data Management in Python
Sankhya_Analytics
 
Stack queue
Stack queue
Harry Potter
 
Stata cheat sheet analysis
Stata cheat sheet analysis
Tim Essam
 
Pandas Cheat Sheet
Pandas Cheat Sheet
ACASH1011
 
5 R Tutorial Data Visualization
5 R Tutorial Data Visualization
Sakthi Dasans
 
Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...
Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...
Lucas Jellema
 
Chapter 6 arrays part-1
Chapter 6 arrays part-1
Synapseindiappsdevelopment
 
Morel, a Functional Query Language
Morel, a Functional Query Language
Julian Hyde
 
R programming
R programming
Shantanu Patil
 
R Programming: Variables & Data Types
R Programming: Variables & Data Types
Rsquared Academy
 

More Related Content

What's hot (20)

Sparklyr
Sparklyr
Dieudonne Nahigombeye
 
Data transformation-cheatsheet
Data transformation-cheatsheet
Dieudonne Nahigombeye
 
Stata cheat sheet: data processing
Stata cheat sheet: data processing
Tim Essam
 
Stata Programming Cheat Sheet
Stata Programming Cheat Sheet
Laura Hughes
 
Data import-cheatsheet
Data import-cheatsheet
Dieudonne Nahigombeye
 
Stata cheatsheet transformation
Stata cheatsheet transformation
Laura Hughes
 
Stata cheat sheet: data transformation
Stata cheat sheet: data transformation
Tim Essam
 
Hive function-cheat-sheet
Hive function-cheat-sheet
Dr. Volkan OBAN
 
Dplyr and Plyr
Dplyr and Plyr
Paul Richards
 
Arrays in SAS
Arrays in SAS
guest2160992
 
R factors
R factors
Learnbay Datascience
 
Introduction to data.table in R
Introduction to data.table in R
Paul Richards
 
Data Management in Python
Data Management in Python
Sankhya_Analytics
 
Stack queue
Stack queue
Harry Potter
 
Stata cheat sheet analysis
Stata cheat sheet analysis
Tim Essam
 
Pandas Cheat Sheet
Pandas Cheat Sheet
ACASH1011
 
5 R Tutorial Data Visualization
5 R Tutorial Data Visualization
Sakthi Dasans
 
Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...
Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...
Lucas Jellema
 
Chapter 6 arrays part-1
Chapter 6 arrays part-1
Synapseindiappsdevelopment
 
Morel, a Functional Query Language
Morel, a Functional Query Language
Julian Hyde
 
Stata cheat sheet: data processing
Stata cheat sheet: data processing
Tim Essam
 
Stata Programming Cheat Sheet
Stata Programming Cheat Sheet
Laura Hughes
 
Stata cheatsheet transformation
Stata cheatsheet transformation
Laura Hughes
 
Stata cheat sheet: data transformation
Stata cheat sheet: data transformation
Tim Essam
 
Hive function-cheat-sheet
Hive function-cheat-sheet
Dr. Volkan OBAN
 
Introduction to data.table in R
Introduction to data.table in R
Paul Richards
 
Stata cheat sheet analysis
Stata cheat sheet analysis
Tim Essam
 
Pandas Cheat Sheet
Pandas Cheat Sheet
ACASH1011
 
5 R Tutorial Data Visualization
5 R Tutorial Data Visualization
Sakthi Dasans
 
Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...
Oracle Database 12c - Introducing SQL Pattern Recognition through MATCH_RECOG...
Lucas Jellema
 
Morel, a Functional Query Language
Morel, a Functional Query Language
Julian Hyde
 

Viewers also liked (20)

R programming
R programming
Shantanu Patil
 
R Programming: Variables & Data Types
R Programming: Variables & Data Types
Rsquared Academy
 
CIV1900 Matlab - Plotting & Coursework
CIV1900 Matlab - Plotting & Coursework
TUOS-Sam
 
Variables in matlab
Variables in matlab
TUOS-Sam
 
Matlab time series example
Matlab time series example
Ovie Uddin Ovie Uddin
 
metode numerik stepest descent dengan rerata aritmatika
metode numerik stepest descent dengan rerata aritmatika
Sabarinsyah Piliang
 
Introduction to Matlab Scripts
Introduction to Matlab Scripts
Shameer Ahmed Koya
 
Loops in matlab
Loops in matlab
TUOS-Sam
 
Modul1 metode bagi dua Praktikum Metode Numerik
Modul1 metode bagi dua Praktikum Metode Numerik
James Montolalu
 
Modul2 metode regula falsi praktikum metode numerik
Modul2 metode regula falsi praktikum metode numerik
James Montolalu
 
User defined Functions in MATLAB Part 1
User defined Functions in MATLAB Part 1
Shameer Ahmed Koya
 
Fungsi grafik di matlab
Fungsi grafik di matlab
UNISKA, SMK Telkom Banjarbaru
 
User Defined Functions in MATLAB Part-4
User Defined Functions in MATLAB Part-4
Shameer Ahmed Koya
 
Metode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unila
Ibad Ahmad
 
Band Combination of Landsat 8 Earth-observing Satellite Images
Band Combination of Landsat 8 Earth-observing Satellite Images
Kabir Uddin
 
Matlab 1 level_1
Matlab 1 level_1
Ahmed Farouk
 
MATLAB Programming - Loop Control Part 2
MATLAB Programming - Loop Control Part 2
Shameer Ahmed Koya
 
mat lab introduction and basics to learn
mat lab introduction and basics to learn
pavan373
 
Panduan matlab
Panduan matlab
giya12001
 
Metode numerik persamaan non linier
Metode numerik persamaan non linier
Izhan Nassuha
 
R Programming: Variables & Data Types
R Programming: Variables & Data Types
Rsquared Academy
 
CIV1900 Matlab - Plotting & Coursework
CIV1900 Matlab - Plotting & Coursework
TUOS-Sam
 
Variables in matlab
Variables in matlab
TUOS-Sam
 
metode numerik stepest descent dengan rerata aritmatika
metode numerik stepest descent dengan rerata aritmatika
Sabarinsyah Piliang
 
Introduction to Matlab Scripts
Introduction to Matlab Scripts
Shameer Ahmed Koya
 
Loops in matlab
Loops in matlab
TUOS-Sam
 
Modul1 metode bagi dua Praktikum Metode Numerik
Modul1 metode bagi dua Praktikum Metode Numerik
James Montolalu
 
Modul2 metode regula falsi praktikum metode numerik
Modul2 metode regula falsi praktikum metode numerik
James Montolalu
 
User defined Functions in MATLAB Part 1
User defined Functions in MATLAB Part 1
Shameer Ahmed Koya
 
User Defined Functions in MATLAB Part-4
User Defined Functions in MATLAB Part-4
Shameer Ahmed Koya
 
Metode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unila
Ibad Ahmad
 
Band Combination of Landsat 8 Earth-observing Satellite Images
Band Combination of Landsat 8 Earth-observing Satellite Images
Kabir Uddin
 
MATLAB Programming - Loop Control Part 2
MATLAB Programming - Loop Control Part 2
Shameer Ahmed Koya
 
mat lab introduction and basics to learn
mat lab introduction and basics to learn
pavan373
 
Panduan matlab
Panduan matlab
giya12001
 
Metode numerik persamaan non linier
Metode numerik persamaan non linier
Izhan Nassuha
 
Ad

Similar to R Programming: Numeric Functions In R (20)

R Programming: Mathematical Functions In R
R Programming: Mathematical Functions In R
Rsquared Academy
 
R Programming Intro
R Programming Intro
062MayankSinghal
 
Introduction to R programming
Introduction to R programming
Alberto Labarga
 
BA lab1.pptx
BA lab1.pptx
sherifsalem24
 
Unit I - 1R introduction to R program.pptx
Unit I - 1R introduction to R program.pptx
SreeLaya9
 
R Basics
R Basics
Dr.E.N.Sathishkumar
 
[1062BPY12001] Data analysis with R / week 2
[1062BPY12001] Data analysis with R / week 2
Kevin Chun-Hsien Hsu
 
R Programming: Comparing Objects In R
R Programming: Comparing Objects In R
Rsquared Academy
 
Ggplot2 v3
Ggplot2 v3
Josh Doyle
 
BUilt in Functions and Simple programs in R.pdf
BUilt in Functions and Simple programs in R.pdf
karthikaparthasarath
 
Loops and functions in r
Loops and functions in r
manikanta361
 
R1-Intro (2udsjhfkjdshfkjsdkfhsdkfsfsffs
R1-Intro (2udsjhfkjdshfkjsdkfhsdkfsfsffs
sabari Giri
 
statistical computation using R- an intro..
statistical computation using R- an intro..
Kamarudheen KV
 
世预赛买球-世预赛买球比赛投注-世预赛买球比赛投注官网|【​网址​🎉ac10.net🎉​】
世预赛买球-世预赛买球比赛投注-世预赛买球比赛投注官网|【​网址​🎉ac10.net🎉​】
bljeremy734
 
世预赛买球-世预赛买球竞彩平台-世预赛买球竞猜平台|【​网址​🎉ac123.net🎉​】
世预赛买球-世预赛买球竞彩平台-世预赛买球竞猜平台|【​网址​🎉ac123.net🎉​】
hanniaarias53
 
美洲杯买球-美洲杯买球怎么押注-美洲杯买球押注怎么玩|【​网址​🎉ac99.net🎉​】
美洲杯买球-美洲杯买球怎么押注-美洲杯买球押注怎么玩|【​网址​🎉ac99.net🎉​】
kokoparmod677
 
欧洲杯体彩-欧洲杯体彩比赛投注-欧洲杯体彩比赛投注官网|【​网址​🎉ac99.net🎉​】
欧洲杯体彩-欧洲杯体彩比赛投注-欧洲杯体彩比赛投注官网|【​网址​🎉ac99.net🎉​】
lopezkatherina914
 
世预赛投注-世预赛投注投注官网app-世预赛投注官网app下载|【​网址​🎉ac123.net🎉​】
世预赛投注-世预赛投注投注官网app-世预赛投注官网app下载|【​网址​🎉ac123.net🎉​】
bljeremy734
 
欧洲杯足彩-欧洲杯足彩线上体育买球-欧洲杯足彩买球推荐网站|【​网址​🎉ac55.net🎉​】
欧洲杯足彩-欧洲杯足彩线上体育买球-欧洲杯足彩买球推荐网站|【​网址​🎉ac55.net🎉​】
brunasordi905
 
欧洲杯下注-欧洲杯下注买球网-欧洲杯下注买球网站|【​网址​🎉ac10.net🎉​】
欧洲杯下注-欧洲杯下注买球网-欧洲杯下注买球网站|【​网址​🎉ac10.net🎉​】
brendonbrash97589
 
R Programming: Mathematical Functions In R
R Programming: Mathematical Functions In R
Rsquared Academy
 
Introduction to R programming
Introduction to R programming
Alberto Labarga
 
Unit I - 1R introduction to R program.pptx
Unit I - 1R introduction to R program.pptx
SreeLaya9
 
[1062BPY12001] Data analysis with R / week 2
[1062BPY12001] Data analysis with R / week 2
Kevin Chun-Hsien Hsu
 
R Programming: Comparing Objects In R
R Programming: Comparing Objects In R
Rsquared Academy
 
BUilt in Functions and Simple programs in R.pdf
BUilt in Functions and Simple programs in R.pdf
karthikaparthasarath
 
Loops and functions in r
Loops and functions in r
manikanta361
 
R1-Intro (2udsjhfkjdshfkjsdkfhsdkfsfsffs
R1-Intro (2udsjhfkjdshfkjsdkfhsdkfsfsffs
sabari Giri
 
statistical computation using R- an intro..
statistical computation using R- an intro..
Kamarudheen KV
 
世预赛买球-世预赛买球比赛投注-世预赛买球比赛投注官网|【​网址​🎉ac10.net🎉​】
世预赛买球-世预赛买球比赛投注-世预赛买球比赛投注官网|【​网址​🎉ac10.net🎉​】
bljeremy734
 
世预赛买球-世预赛买球竞彩平台-世预赛买球竞猜平台|【​网址​🎉ac123.net🎉​】
世预赛买球-世预赛买球竞彩平台-世预赛买球竞猜平台|【​网址​🎉ac123.net🎉​】
hanniaarias53
 
美洲杯买球-美洲杯买球怎么押注-美洲杯买球押注怎么玩|【​网址​🎉ac99.net🎉​】
美洲杯买球-美洲杯买球怎么押注-美洲杯买球押注怎么玩|【​网址​🎉ac99.net🎉​】
kokoparmod677
 
欧洲杯体彩-欧洲杯体彩比赛投注-欧洲杯体彩比赛投注官网|【​网址​🎉ac99.net🎉​】
欧洲杯体彩-欧洲杯体彩比赛投注-欧洲杯体彩比赛投注官网|【​网址​🎉ac99.net🎉​】
lopezkatherina914
 
世预赛投注-世预赛投注投注官网app-世预赛投注官网app下载|【​网址​🎉ac123.net🎉​】
世预赛投注-世预赛投注投注官网app-世预赛投注官网app下载|【​网址​🎉ac123.net🎉​】
bljeremy734
 
欧洲杯足彩-欧洲杯足彩线上体育买球-欧洲杯足彩买球推荐网站|【​网址​🎉ac55.net🎉​】
欧洲杯足彩-欧洲杯足彩线上体育买球-欧洲杯足彩买球推荐网站|【​网址​🎉ac55.net🎉​】
brunasordi905
 
欧洲杯下注-欧洲杯下注买球网-欧洲杯下注买球网站|【​网址​🎉ac10.net🎉​】
欧洲杯下注-欧洲杯下注买球网-欧洲杯下注买球网站|【​网址​🎉ac10.net🎉​】
brendonbrash97589
 
Ad

More from Rsquared Academy (20)

Handling Date & Time in R
Handling Date & Time in R
Rsquared Academy
 
Market Basket Analysis in R
Market Basket Analysis in R
Rsquared Academy
 
Practical Introduction to Web scraping using R
Practical Introduction to Web scraping using R
Rsquared Academy
 
Joining Data with dplyr
Joining Data with dplyr
Rsquared Academy
 
Explore Data using dplyr
Explore Data using dplyr
Rsquared Academy
 
Data Wrangling with dplyr
Data Wrangling with dplyr
Rsquared Academy
 
Writing Readable Code with Pipes
Writing Readable Code with Pipes
Rsquared Academy
 
Introduction to tibbles
Introduction to tibbles
Rsquared Academy
 
Read data from Excel spreadsheets into R
Read data from Excel spreadsheets into R
Rsquared Academy
 
Read/Import data from flat/delimited files into R
Read/Import data from flat/delimited files into R
Rsquared Academy
 
Variables & Data Types in R
Variables & Data Types in R
Rsquared Academy
 
How to install & update R packages?
How to install & update R packages?
Rsquared Academy
 
How to get help in R?
How to get help in R?
Rsquared Academy
 
Introduction to R
Introduction to R
Rsquared Academy
 
R Markdown Tutorial For Beginners
R Markdown Tutorial For Beginners
Rsquared Academy
 
R Data Visualization Tutorial: Bar Plots
R Data Visualization Tutorial: Bar Plots
Rsquared Academy
 
R Programming: Introduction to Matrices
R Programming: Introduction to Matrices
Rsquared Academy
 
R Programming: Introduction to Vectors
R Programming: Introduction to Vectors
Rsquared Academy
 
Data Visualization With R: Learn To Combine Multiple Graphs
Data Visualization With R: Learn To Combine Multiple Graphs
Rsquared Academy
 
R Data Visualization: Learn To Add Text Annotations To Plots
R Data Visualization: Learn To Add Text Annotations To Plots
Rsquared Academy
 
Market Basket Analysis in R
Market Basket Analysis in R
Rsquared Academy
 
Practical Introduction to Web scraping using R
Practical Introduction to Web scraping using R
Rsquared Academy
 
Writing Readable Code with Pipes
Writing Readable Code with Pipes
Rsquared Academy
 
Read data from Excel spreadsheets into R
Read data from Excel spreadsheets into R
Rsquared Academy
 
Read/Import data from flat/delimited files into R
Read/Import data from flat/delimited files into R
Rsquared Academy
 
Variables & Data Types in R
Variables & Data Types in R
Rsquared Academy
 
How to install & update R packages?
How to install & update R packages?
Rsquared Academy
 
R Markdown Tutorial For Beginners
R Markdown Tutorial For Beginners
Rsquared Academy
 
R Data Visualization Tutorial: Bar Plots
R Data Visualization Tutorial: Bar Plots
Rsquared Academy
 
R Programming: Introduction to Matrices
R Programming: Introduction to Matrices
Rsquared Academy
 
R Programming: Introduction to Vectors
R Programming: Introduction to Vectors
Rsquared Academy
 
Data Visualization With R: Learn To Combine Multiple Graphs
Data Visualization With R: Learn To Combine Multiple Graphs
Rsquared Academy
 
R Data Visualization: Learn To Add Text Annotations To Plots
R Data Visualization: Learn To Add Text Annotations To Plots
Rsquared Academy
 

Recently uploaded (20)

定制OCAD学生卡加拿大安大略艺术与设计大学成绩单范本,OCAD成绩单复刻
定制OCAD学生卡加拿大安大略艺术与设计大学成绩单范本,OCAD成绩单复刻
taqyed
 
英国毕业证范本利物浦约翰摩尔斯大学成绩单底纹防伪LJMU学生证办理学历认证
英国毕业证范本利物浦约翰摩尔斯大学成绩单底纹防伪LJMU学生证办理学历认证
taqyed
 
Camuflaje Tipos Características Militar 2025.ppt
Camuflaje Tipos Características Militar 2025.ppt
e58650738
 
Starbucks in the Indian market through its joint venture.
Starbucks in the Indian market through its joint venture.
sales480687
 
Microsoft Power BI - Advanced Certificate for Business Intelligence using Pow...
Microsoft Power BI - Advanced Certificate for Business Intelligence using Pow...
Prasenjit Debnath
 
presentation4.pdf Intro to mcmc methodss
presentation4.pdf Intro to mcmc methodss
SergeyTsygankov6
 
Daily, Weekly, Monthly Report MTC March 2025.pptx
Daily, Weekly, Monthly Report MTC March 2025.pptx
PanjiDewaPamungkas1
 
lecture12.pdf Introduction to bioinformatics
lecture12.pdf Introduction to bioinformatics
SergeyTsygankov6
 
@Reset-Password.pptx presentakh;kenvtion
@Reset-Password.pptx presentakh;kenvtion
MarkLariosa1
 
11_L2_Defects_and_Trouble_Shooting_2014[1].pdf
11_L2_Defects_and_Trouble_Shooting_2014[1].pdf
gun3awan88
 
Artigo - Playing to Win.planejamento docx
Artigo - Playing to Win.planejamento docx
KellyXavier15
 
The Influence off Flexible Work Policies
The Influence off Flexible Work Policies
sales480687
 
Boost Business Efficiency with Professional Data Entry Services
Boost Business Efficiency with Professional Data Entry Services
eloiacs eloiacs
 
Indigo dyeing Presentation (2).pptx as dye
Indigo dyeing Presentation (2).pptx as dye
shreeroop1335
 
Allotted-MBBS-Student-list-batch-2021.pdf
Allotted-MBBS-Student-list-batch-2021.pdf
subhansaifi0603
 
ilide.info-tg-understanding-culture-society-and-politics-pr_127f984d2904c57ec...
ilide.info-tg-understanding-culture-society-and-politics-pr_127f984d2904c57ec...
jed P
 
Mynd company all details what they are doing a
Mynd company all details what they are doing a
AniketKadam40952
 
Model Evaluation & Visualisation part of a series of intro modules for data ...
Model Evaluation & Visualisation part of a series of intro modules for data ...
brandonlee626749
 
NVIDIA Triton Inference Server, a game-changing platform for deploying AI mod...
NVIDIA Triton Inference Server, a game-changing platform for deploying AI mod...
Tamanna36
 
Communication_Skills_Class10_Visual.pptx
Communication_Skills_Class10_Visual.pptx
namanrastogi70555
 
定制OCAD学生卡加拿大安大略艺术与设计大学成绩单范本,OCAD成绩单复刻
定制OCAD学生卡加拿大安大略艺术与设计大学成绩单范本,OCAD成绩单复刻
taqyed
 
英国毕业证范本利物浦约翰摩尔斯大学成绩单底纹防伪LJMU学生证办理学历认证
英国毕业证范本利物浦约翰摩尔斯大学成绩单底纹防伪LJMU学生证办理学历认证
taqyed
 
Camuflaje Tipos Características Militar 2025.ppt
Camuflaje Tipos Características Militar 2025.ppt
e58650738
 
Starbucks in the Indian market through its joint venture.
Starbucks in the Indian market through its joint venture.
sales480687
 
Microsoft Power BI - Advanced Certificate for Business Intelligence using Pow...
Microsoft Power BI - Advanced Certificate for Business Intelligence using Pow...
Prasenjit Debnath
 
presentation4.pdf Intro to mcmc methodss
presentation4.pdf Intro to mcmc methodss
SergeyTsygankov6
 
Daily, Weekly, Monthly Report MTC March 2025.pptx
Daily, Weekly, Monthly Report MTC March 2025.pptx
PanjiDewaPamungkas1
 
lecture12.pdf Introduction to bioinformatics
lecture12.pdf Introduction to bioinformatics
SergeyTsygankov6
 
@Reset-Password.pptx presentakh;kenvtion
@Reset-Password.pptx presentakh;kenvtion
MarkLariosa1
 
11_L2_Defects_and_Trouble_Shooting_2014[1].pdf
11_L2_Defects_and_Trouble_Shooting_2014[1].pdf
gun3awan88
 
Artigo - Playing to Win.planejamento docx
Artigo - Playing to Win.planejamento docx
KellyXavier15
 
The Influence off Flexible Work Policies
The Influence off Flexible Work Policies
sales480687
 
Boost Business Efficiency with Professional Data Entry Services
Boost Business Efficiency with Professional Data Entry Services
eloiacs eloiacs
 
Indigo dyeing Presentation (2).pptx as dye
Indigo dyeing Presentation (2).pptx as dye
shreeroop1335
 
Allotted-MBBS-Student-list-batch-2021.pdf
Allotted-MBBS-Student-list-batch-2021.pdf
subhansaifi0603
 
ilide.info-tg-understanding-culture-society-and-politics-pr_127f984d2904c57ec...
ilide.info-tg-understanding-culture-society-and-politics-pr_127f984d2904c57ec...
jed P
 
Mynd company all details what they are doing a
Mynd company all details what they are doing a
AniketKadam40952
 
Model Evaluation & Visualisation part of a series of intro modules for data ...
Model Evaluation & Visualisation part of a series of intro modules for data ...
brandonlee626749
 
NVIDIA Triton Inference Server, a game-changing platform for deploying AI mod...
NVIDIA Triton Inference Server, a game-changing platform for deploying AI mod...
Tamanna36
 
Communication_Skills_Class10_Visual.pptx
Communication_Skills_Class10_Visual.pptx
namanrastogi70555
 

R Programming: Numeric Functions In R