SlideShare a Scribd company logo
Learn ggplot2
A K f SkillAs Kungfu Skills
Given by
Kai Xiao(Data Sciencetist)
Vi i Zh (C f d & CTO)Vivian Zhang(Co-founder & CTO)
Contact: vivian zhang@supstat comContact: vivian.zhang@supstat.com
• I: Point
• II: Bar
• III:Histogramg
• IV:Line
• V: Tile• V: Tile
• VI:Map
IntroductionIntroduction
• ggplot2!is!a!plotting!system!for!R
• based!on!the《The Grammar!of!
Graphics》
• which!tries!to!take!the!good!parts!
of!base!and!lattice!graphics!and!
none of the bad partsnone!of!the!bad!parts
• It!takes!care!of!many!of!the!fiddly!
details that make plotting a hassledetails!that!make!plotting!a!hassle
• It!becomes!easy!to!produce!
complex!multi‐layered!graphicsp y g p
Why we love ggplot2?Why we love ggplot2?
• control the plot as abstract layers and make creativity become reality;
d l hi ki• get used to structural thinking;
• get beautiful graphics while avoiding complicated details
1973 murder cases in USA
7 Basic Concepts7 Basic Concepts
Mapping• Mapping
• Scale
• Geometric
• StatisticsStat st cs
• Coordinate
L• Layer
• Facet
MappingMapping
M i t l l ti b t i blMapping controls relations between variables
ScaleScale
Scale will present mapping on coordinate scalesScale will present mapping on coordinate scales.
Scale and Mapping is closely related concepts.
GeometricGeometric
Geom means the graphical elements such asGeom means the graphical elements, such as
points, lines and polygons.
StatisticsStatistics
Stat enables us to calculate and do statisticalStat enables us to calculate and do statistical
analysis based, such as adding a regression line.
StatStat
CoordinateCoordinate
Cood will affect how we observe graphicalCood will affect how we observe graphical
elements. Transformation of coordinates is useful.
Stat Coord
LayerLayer
Component: data, mapping, geom, stat
i l ill ll bli h lUsing layer will allow users to establish plots step
by step. It become much easier to modify a plot.
FacetFacet
Facet splits data into groups and draw each
group separately. Usually, there is a order.
7 Basic Concepts7 Basic Concepts
Mapping• Mapping
• Scale
• Geometric
• StatisticsStat st cs
• Coordinate
L• Layer
• Facet
Skill I:PointSkill I:Point
Sample data--mpgSample data mpg
• Fuel economy data from 1999 and 2008 for 38 populary p p
modelsof car
D il• Details
• Displ :!!!!!!!!!!!!!!!engine!displacement,!in!litres
• Cyl: number of cylinders• Cyl:!!!!!!!!!!!!!!!!!!!!number!of!cylinders!
• Trans:!!!!!!!!!!!!!!!!type!of!transmission!
• Drv:!!!!!!!!!!!!!!!!!!!front‐wheel,!rear!wheel!drive,!4wd!, ,
• Cty:!!!!!!!!!!!!!!!!!!!!city!miles!per!gallon!
• Hwy:!!!!!!!!!!!!!!!!!!highway!miles!per!gallon!
> library(ggplot2)
> str(mpg)
'data.frame': 234 obs. of 14 variables:
$ manufacturer: Factor w/ 15 levels "audi","chevrolet",..:
$ model : Factor w/ 38 levels "4runner 4wd",..:
$ displ : num 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
$ year : int 1999 1999 2008 2008 1999 1999 2008 1999$ year : int 1999 1999 2008 2008 1999 1999 2008 1999
$ cyl : int 4 4 4 4 6 6 6 4 4 4 ...
$ trans : Factor w/ 10 levels "auto(av)","auto(l3)",..:
$ d 3 l l f$ drv : Factor w/ 3 levels "4","f","r":
$ cty : int 18 21 20 21 16 18 18 18 16 20 ...
$ hwy : int 29 29 31 30 26 26 27 26 25 28 ...
$ fl : Factor w/ 5 levels "c","d","e","p",..:
$ class : Factor w/ 7 levels "2seater","compact",..:
p <‐ ggplot(data=mpg mapping=aes(x=cty y=hwy))
aesthetics
p!< ggplot(data mpg,!mapping aes(x cty,!y hwy))
p!+!geom_point()
>!summary(p)!
data:!manufacturer,!model,!displ,!year,!cyl,!trans,!drv,!cty,!hwy,!
fl l [ ]fl,!class![234x11]!
mapping:!x!=!cty,!y!=!hwy
faceting:!facet_null()!g _ ()
>!summary(p+geom_point())
data: manufacturer model displ year cyl trans drv cty hwydata:!manufacturer,!model,!displ,!year,!cyl,!trans,!drv,!cty,!hwy,
fl,!class![234x11]
mapping:!!x!=!cty,!y!=!hwy
f i f ll()faceting:!facet_null()!
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
geom_point:!na.rm!=!FALSE!g _p
stat_identity:!!
position_identity:!(width!=!NULL,!height!=!NULL)
p + geom point(color='red4' size=3)p!+!geom_point(color red4 ,size 3)
# add one more layer--color
p <- ggplot(mpg,aes(x=cty,y=hwy,colour=factor(year)))p ggp ( pg, ( y,y y, (y )))
p + geom_point()
# add one more stat (loess: local partial polynomial regression)
>!p!+!geom_point()!+!stat_smooth()
p!<‐ ggplot(data=mpg,!mapping=aes(x=cty,y=hwy))
p!+!geom_point(aes(colour=factor(year)))+p g _p ( ( (y )))
stat_smooth()
Two equally ways to draw
p <‐ ggplot(mpg aes(x=cty y=hwy))
q y y
p!!<‐ ggplot(mpg,!aes(x=cty,y=hwy))
p!!+!geom_point(aes(colour=factor(year)))+
stat smooth()_ ()
()d!<‐ ggplot()!+
geom_point(data=mpg,!aes(x=cty,!y=hwy,!colour=factor(year)))+
stat_smooth(data=mpg,!aes(x=cty,!y=hwy))
print(d)
Beside the “white paper”canvas, we will find geom and stat
canvas.
>!summary(d)
data:![0x0][ ]
faceting:!facet_null()!
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
mapping: x = cty y = hwy colour = factor(year)mapping:!x!=!cty,!y!=!hwy,!colour =!factor(year)!
geom_point:!na.rm!=!FALSE!
stat_identity:!!
position_identity:!(width!=!NULL,!height!=!NULL)
mapping:!x!=!cty,!y!=!hwy!pp g y, y y
geom_smooth:!!
stat_smooth:!method!=!auto,!formula!=!y!~!x,!se!=!TRUE,!
n = 80 fullrange = FALSE level = 0 95 na rm = FALSEn!=!80,!fullrange =!FALSE,!level!=!0.95,!na.rm!=!FALSE!
position_identity:!(width!=!NULL,!height!=!NULL)
# Using scale() function, we can control color of scale.
p + geom_point(aes(colour=factor(year)))+
h()stat_smooth()+
scale_color_manual(values =c('steelblue','red4'))
# We can map “displ”to the size of point
p + geom_point(aes(colour=factor(year),size=displ))+
h()stat_smooth()+
scale_color_manual(values =c('steelblue','red4'))
#!We!solve!the!problem!with!overlapping!and!point!being!too!small
p!+!geom_point(aes(colour=factor(year),size=displ),!alpha=0.5,position!=!"jitter")+
stat_smooth()+
scale_color_manual(values!=c('steelblue','red4'))+
scale_size_continuous(range!=!c(4,!10))
#!We!change!the!coordinate!system.
p!+!geom_point(aes(colour=factor(year),size=displ),!alpha=0.5,position!=!"jitter")+
stat_smooth()+
scale_color_manual(values!=c('steelblue','red4'))+
scale_size_continuous(range!=!c(4,!10))!+!!!!coord_flip()
p!+!geom_point(aes(colour=factor(year),size=displ),
alpha=0.5,position!=!"jitter")+
stat smooth()+_ ()
scale_color_manual(values!=c('steelblue','red4'))+
scale_size_continuous(range!=!c(4,!10))!!+!!!!coord_polar()
p!+!geom_point(aes(colour=factor(year),size=displ),
alpha=0.5,position!=!"jitter")!!+!!!!stat_smooth()+
scale color manual(values!=c('steelblue','red4'))+_ _ ( ( , ))
scale_size_continuous(range!=!c(4,!10))+!!!!!!!!!!!!!!!!!!!
coord_cartesian(xlim =!c(15,!25),!ylim=c(15,40))
# Using facet() function, we now split data and draw them by group
p + geom_point(aes(colour=class,size=displ),
alpha=0.5,position = "jitter")+
hstat_smooth()+
scale_size_continuous(range = c(4, 10))+
facet_wrap(~ year,ncol=1)
# Add plot name and specify all information you want to add
p <- ggplot(mpg, aes(x=cty,y=hwy))
p + geom_point(aes(colour=class,size=displ),
alpha=0.5,position = "jitter")+ stat_smooth()+
l i ti ( (4 10))scale_size_continuous(range = c(4, 10))+
facet_wrap(~ year,ncol=1) + opts(title='model of car and mpg')+
labs(y='driving distance per gallon on highway', x='driving distance per gallon on city road',
size='displacement', colour ='model')
# scatter plot for diamond dataset
p <- ggplot(diamonds,aes(carat,price))p ggp ( , ( ,p ))
p + geom_point()
# use transparency and small size points
p + geom_point(size=0.1,alpha=0.1)p g _p ( , p )
# use bin chart to observe intensity of points
p + stat_bin2d(bins = 40)p _ ( )
# estimate data dentisy
p + stat_density2d(aes(fill = ..level..), geom="polygon") +
coord cartesian(xlim = c(0 1 5) ylim=c(0 6000))coord_cartesian(xlim = c(0, 1.5),ylim=c(0,6000))
Skill II:BarSkill II:Bar
Skill III:HistogramSkill III:Histogram
Skill IV:LineSkill IV:Line
Skill V:TileSkill V:Tile
Skill VI:MapSkill VI:Map
ResourcesResources
http://learnr.wordpress.com
Redraw all the lattice graphRedraw all the lattice graph
by ggplot2
ResourcesResources
All the examples are done by
ggplot2ggplot2.
ResourcesResources
• http://wiki stdout org/rcookbook/Graphs/http://wiki.stdout.org/rcookbook/Graphs/
• http://r-blogger.com
htt //St k fl• http://Stackoverflow.com
• http://xccds1977.blogspot.com
• http://r-ke.info/
• http://www.youtube.com/watch?v=vnVJJYi1
mbw
Thank you! Come back for more!
Sign up at: www.meetup.com/nyc-open-data
Give feedback at: www.bit.ly/nycopen
Ad

Recommended

Elegant Graphics for Data Analysis with ggplot2
Elegant Graphics for Data Analysis with ggplot2
yannabraham
 
Intro to ggplot2 - Sheffield R Users Group, Feb 2015
Intro to ggplot2 - Sheffield R Users Group, Feb 2015
Paul Richards
 
Data visualization-2.1
Data visualization-2.1
RenukaRajmohan
 
Data Visualization with ggplot2.pdf
Data Visualization with ggplot2.pdf
CarlosTrujillo199971
 
VISIALIZACION DE DATA.pdf
VISIALIZACION DE DATA.pdf
Ivan Bautista Fuentes
 
Download full ebook of Datacamp Ggplot2 Cheatsheet Itebooks instant download pdf
Download full ebook of Datacamp Ggplot2 Cheatsheet Itebooks instant download pdf
miatalafeer
 
data-visualization.pdf
data-visualization.pdf
Juan José Rivas
 
Tech talk ggplot2
Tech talk ggplot2
jalle6
 
[系列活動] Data exploration with modern R
[系列活動] Data exploration with modern R
台灣資料科學年會
 
Ggplot
Ggplot
Jhojan Diaz Roa
 
Ggplot2 cheatsheet-2.1
Ggplot2 cheatsheet-2.1
Dieudonne Nahigombeye
 
Data visualization using the grammar of graphics
Data visualization using the grammar of graphics
Rupak Roy
 
Data visualization with R and ggplot2.docx
Data visualization with R and ggplot2.docx
kassaye4
 
M4_DAR_part1. module part 4 analystics with r
M4_DAR_part1. module part 4 analystics with r
LalithauLali
 
Introduction to R Graphics with ggplot2
Introduction to R Graphics with ggplot2
izahn
 
Some R Examples[R table and Graphics] -Advanced Data Visualization in R (Some...
Some R Examples[R table and Graphics] -Advanced Data Visualization in R (Some...
Dr. Volkan OBAN
 
Ggplot2 1outof3
Ggplot2 1outof3
Vivian S. Zhang
 
Ggplot2 1outof3
Ggplot2 1outof3
Vivian S. Zhang
 
Murtaugh 2022 Appl Comp Genomics Tidyverse lecture.pptx-1.pptx
Murtaugh 2022 Appl Comp Genomics Tidyverse lecture.pptx-1.pptx
oliversen
 
Broom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data Frames
Work-Bench
 
RBootcamp Day 4
RBootcamp Day 4
Olga Scrivner
 
sexy maps comes to R - ggplot+ google maps= ggmap #rstats
sexy maps comes to R - ggplot+ google maps= ggmap #rstats
Ajay Ohri
 
Spatial visualization with ggplot2
Spatial visualization with ggplot2
Joaquim Silva
 
Ggplot2 ch2
Ggplot2 ch2
heba_ahmad
 
ggplot2: An Extensible Platform for Publication-quality Graphics
ggplot2: An Extensible Platform for Publication-quality Graphics
Claus Wilke
 
Introduction to GGVIS Visualization
Introduction to GGVIS Visualization
HemantSingh311
 
R-ggplot2 package Examples
R-ggplot2 package Examples
Dr. Volkan OBAN
 
Introduction to R for data science
Introduction to R for data science
Long Nguyen
 
Why NYC DSA.pdf
Why NYC DSA.pdf
Vivian S. Zhang
 
Career services workshop- Roger Ren
Career services workshop- Roger Ren
Vivian S. Zhang
 

More Related Content

Similar to R workshop iii -- 3 hours to learn ggplot2 series (20)

[系列活動] Data exploration with modern R
[系列活動] Data exploration with modern R
台灣資料科學年會
 
Ggplot
Ggplot
Jhojan Diaz Roa
 
Ggplot2 cheatsheet-2.1
Ggplot2 cheatsheet-2.1
Dieudonne Nahigombeye
 
Data visualization using the grammar of graphics
Data visualization using the grammar of graphics
Rupak Roy
 
Data visualization with R and ggplot2.docx
Data visualization with R and ggplot2.docx
kassaye4
 
M4_DAR_part1. module part 4 analystics with r
M4_DAR_part1. module part 4 analystics with r
LalithauLali
 
Introduction to R Graphics with ggplot2
Introduction to R Graphics with ggplot2
izahn
 
Some R Examples[R table and Graphics] -Advanced Data Visualization in R (Some...
Some R Examples[R table and Graphics] -Advanced Data Visualization in R (Some...
Dr. Volkan OBAN
 
Ggplot2 1outof3
Ggplot2 1outof3
Vivian S. Zhang
 
Ggplot2 1outof3
Ggplot2 1outof3
Vivian S. Zhang
 
Murtaugh 2022 Appl Comp Genomics Tidyverse lecture.pptx-1.pptx
Murtaugh 2022 Appl Comp Genomics Tidyverse lecture.pptx-1.pptx
oliversen
 
Broom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data Frames
Work-Bench
 
RBootcamp Day 4
RBootcamp Day 4
Olga Scrivner
 
sexy maps comes to R - ggplot+ google maps= ggmap #rstats
sexy maps comes to R - ggplot+ google maps= ggmap #rstats
Ajay Ohri
 
Spatial visualization with ggplot2
Spatial visualization with ggplot2
Joaquim Silva
 
Ggplot2 ch2
Ggplot2 ch2
heba_ahmad
 
ggplot2: An Extensible Platform for Publication-quality Graphics
ggplot2: An Extensible Platform for Publication-quality Graphics
Claus Wilke
 
Introduction to GGVIS Visualization
Introduction to GGVIS Visualization
HemantSingh311
 
R-ggplot2 package Examples
R-ggplot2 package Examples
Dr. Volkan OBAN
 
Introduction to R for data science
Introduction to R for data science
Long Nguyen
 
[系列活動] Data exploration with modern R
[系列活動] Data exploration with modern R
台灣資料科學年會
 
Data visualization using the grammar of graphics
Data visualization using the grammar of graphics
Rupak Roy
 
Data visualization with R and ggplot2.docx
Data visualization with R and ggplot2.docx
kassaye4
 
M4_DAR_part1. module part 4 analystics with r
M4_DAR_part1. module part 4 analystics with r
LalithauLali
 
Introduction to R Graphics with ggplot2
Introduction to R Graphics with ggplot2
izahn
 
Some R Examples[R table and Graphics] -Advanced Data Visualization in R (Some...
Some R Examples[R table and Graphics] -Advanced Data Visualization in R (Some...
Dr. Volkan OBAN
 
Murtaugh 2022 Appl Comp Genomics Tidyverse lecture.pptx-1.pptx
Murtaugh 2022 Appl Comp Genomics Tidyverse lecture.pptx-1.pptx
oliversen
 
Broom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data Frames
Work-Bench
 
sexy maps comes to R - ggplot+ google maps= ggmap #rstats
sexy maps comes to R - ggplot+ google maps= ggmap #rstats
Ajay Ohri
 
Spatial visualization with ggplot2
Spatial visualization with ggplot2
Joaquim Silva
 
ggplot2: An Extensible Platform for Publication-quality Graphics
ggplot2: An Extensible Platform for Publication-quality Graphics
Claus Wilke
 
Introduction to GGVIS Visualization
Introduction to GGVIS Visualization
HemantSingh311
 
R-ggplot2 package Examples
R-ggplot2 package Examples
Dr. Volkan OBAN
 
Introduction to R for data science
Introduction to R for data science
Long Nguyen
 

More from Vivian S. Zhang (20)

Why NYC DSA.pdf
Why NYC DSA.pdf
Vivian S. Zhang
 
Career services workshop- Roger Ren
Career services workshop- Roger Ren
Vivian S. Zhang
 
Nycdsa wordpress guide book
Nycdsa wordpress guide book
Vivian S. Zhang
 
We're so skewed_presentation
We're so skewed_presentation
Vivian S. Zhang
 
Wikipedia: Tuned Predictions on Big Data
Wikipedia: Tuned Predictions on Big Data
Vivian S. Zhang
 
A Hybrid Recommender with Yelp Challenge Data
A Hybrid Recommender with Yelp Challenge Data
Vivian S. Zhang
 
Kaggle Top1% Solution: Predicting Housing Prices in Moscow
Kaggle Top1% Solution: Predicting Housing Prices in Moscow
Vivian S. Zhang
 
Data mining with caret package
Data mining with caret package
Vivian S. Zhang
 
Xgboost
Xgboost
Vivian S. Zhang
 
Streaming Python on Hadoop
Streaming Python on Hadoop
Vivian S. Zhang
 
Kaggle Winning Solution Xgboost algorithm -- Let us learn from its author
Kaggle Winning Solution Xgboost algorithm -- Let us learn from its author
Vivian S. Zhang
 
Xgboost
Xgboost
Vivian S. Zhang
 
Nyc open-data-2015-andvanced-sklearn-expanded
Nyc open-data-2015-andvanced-sklearn-expanded
Vivian S. Zhang
 
Nycdsa ml conference slides march 2015
Nycdsa ml conference slides march 2015
Vivian S. Zhang
 
THE HACK ON JERSEY CITY CONDO PRICES explore trends in public data
THE HACK ON JERSEY CITY CONDO PRICES explore trends in public data
Vivian S. Zhang
 
Max Kuhn's talk on R machine learning
Max Kuhn's talk on R machine learning
Vivian S. Zhang
 
Winning data science competitions, presented by Owen Zhang
Winning data science competitions, presented by Owen Zhang
Vivian S. Zhang
 
Using Machine Learning to aid Journalism at the New York Times
Using Machine Learning to aid Journalism at the New York Times
Vivian S. Zhang
 
Introducing natural language processing(NLP) with r
Introducing natural language processing(NLP) with r
Vivian S. Zhang
 
Bayesian models in r
Bayesian models in r
Vivian S. Zhang
 
Career services workshop- Roger Ren
Career services workshop- Roger Ren
Vivian S. Zhang
 
Nycdsa wordpress guide book
Nycdsa wordpress guide book
Vivian S. Zhang
 
We're so skewed_presentation
We're so skewed_presentation
Vivian S. Zhang
 
Wikipedia: Tuned Predictions on Big Data
Wikipedia: Tuned Predictions on Big Data
Vivian S. Zhang
 
A Hybrid Recommender with Yelp Challenge Data
A Hybrid Recommender with Yelp Challenge Data
Vivian S. Zhang
 
Kaggle Top1% Solution: Predicting Housing Prices in Moscow
Kaggle Top1% Solution: Predicting Housing Prices in Moscow
Vivian S. Zhang
 
Data mining with caret package
Data mining with caret package
Vivian S. Zhang
 
Streaming Python on Hadoop
Streaming Python on Hadoop
Vivian S. Zhang
 
Kaggle Winning Solution Xgboost algorithm -- Let us learn from its author
Kaggle Winning Solution Xgboost algorithm -- Let us learn from its author
Vivian S. Zhang
 
Nyc open-data-2015-andvanced-sklearn-expanded
Nyc open-data-2015-andvanced-sklearn-expanded
Vivian S. Zhang
 
Nycdsa ml conference slides march 2015
Nycdsa ml conference slides march 2015
Vivian S. Zhang
 
THE HACK ON JERSEY CITY CONDO PRICES explore trends in public data
THE HACK ON JERSEY CITY CONDO PRICES explore trends in public data
Vivian S. Zhang
 
Max Kuhn's talk on R machine learning
Max Kuhn's talk on R machine learning
Vivian S. Zhang
 
Winning data science competitions, presented by Owen Zhang
Winning data science competitions, presented by Owen Zhang
Vivian S. Zhang
 
Using Machine Learning to aid Journalism at the New York Times
Using Machine Learning to aid Journalism at the New York Times
Vivian S. Zhang
 
Introducing natural language processing(NLP) with r
Introducing natural language processing(NLP) with r
Vivian S. Zhang
 
Ad

Recently uploaded (20)

Learning Styles Inventory for Senior High School Students
Learning Styles Inventory for Senior High School Students
Thelma Villaflores
 
Wage and Salary Computation.ppt.......,x
Wage and Salary Computation.ppt.......,x
JosalitoPalacio
 
2025 June Year 9 Presentation: Subject selection.pptx
2025 June Year 9 Presentation: Subject selection.pptx
mansk2
 
GREAT QUIZ EXCHANGE 2025 - GENERAL QUIZ.pptx
GREAT QUIZ EXCHANGE 2025 - GENERAL QUIZ.pptx
Ronisha Das
 
How to use _name_search() method in Odoo 18
How to use _name_search() method in Odoo 18
Celine George
 
Tanja Vujicic - PISA for Schools contact Info
Tanja Vujicic - PISA for Schools contact Info
EduSkills OECD
 
M&A5 Q1 1 differentiate evolving early Philippine conventional and contempora...
M&A5 Q1 1 differentiate evolving early Philippine conventional and contempora...
ErlizaRosete
 
List View Components in Odoo 18 - Odoo Slides
List View Components in Odoo 18 - Odoo Slides
Celine George
 
University of Ghana Cracks Down on Misconduct: Over 100 Students Sanctioned
University of Ghana Cracks Down on Misconduct: Over 100 Students Sanctioned
Kweku Zurek
 
Pests of Maize: An comprehensive overview.pptx
Pests of Maize: An comprehensive overview.pptx
Arshad Shaikh
 
Gladiolous Cultivation practices by AKL.pdf
Gladiolous Cultivation practices by AKL.pdf
kushallamichhame
 
F-BLOCK ELEMENTS POWER POINT PRESENTATIONS
F-BLOCK ELEMENTS POWER POINT PRESENTATIONS
mprpgcwa2024
 
June 2025 Progress Update With Board Call_In process.pptx
June 2025 Progress Update With Board Call_In process.pptx
International Society of Service Innovation Professionals
 
Great Governors' Send-Off Quiz 2025 Prelims IIT KGP
Great Governors' Send-Off Quiz 2025 Prelims IIT KGP
IIT Kharagpur Quiz Club
 
How to use search fetch method in Odoo 18
How to use search fetch method in Odoo 18
Celine George
 
How to Manage Different Customer Addresses in Odoo 18 Accounting
How to Manage Different Customer Addresses in Odoo 18 Accounting
Celine George
 
English 3 Quarter 1_LEwithLAS_Week 1.pdf
English 3 Quarter 1_LEwithLAS_Week 1.pdf
DeAsisAlyanajaneH
 
Public Health For The 21st Century 1st Edition Judy Orme Jane Powell
Public Health For The 21st Century 1st Edition Judy Orme Jane Powell
trjnesjnqg7801
 
Aprendendo Arquitetura Framework Salesforce - Dia 02
Aprendendo Arquitetura Framework Salesforce - Dia 02
Mauricio Alexandre Silva
 
Q1_TLE 8_Week 1- Day 1 tools and equipment
Q1_TLE 8_Week 1- Day 1 tools and equipment
clairenotado3
 
Learning Styles Inventory for Senior High School Students
Learning Styles Inventory for Senior High School Students
Thelma Villaflores
 
Wage and Salary Computation.ppt.......,x
Wage and Salary Computation.ppt.......,x
JosalitoPalacio
 
2025 June Year 9 Presentation: Subject selection.pptx
2025 June Year 9 Presentation: Subject selection.pptx
mansk2
 
GREAT QUIZ EXCHANGE 2025 - GENERAL QUIZ.pptx
GREAT QUIZ EXCHANGE 2025 - GENERAL QUIZ.pptx
Ronisha Das
 
How to use _name_search() method in Odoo 18
How to use _name_search() method in Odoo 18
Celine George
 
Tanja Vujicic - PISA for Schools contact Info
Tanja Vujicic - PISA for Schools contact Info
EduSkills OECD
 
M&A5 Q1 1 differentiate evolving early Philippine conventional and contempora...
M&A5 Q1 1 differentiate evolving early Philippine conventional and contempora...
ErlizaRosete
 
List View Components in Odoo 18 - Odoo Slides
List View Components in Odoo 18 - Odoo Slides
Celine George
 
University of Ghana Cracks Down on Misconduct: Over 100 Students Sanctioned
University of Ghana Cracks Down on Misconduct: Over 100 Students Sanctioned
Kweku Zurek
 
Pests of Maize: An comprehensive overview.pptx
Pests of Maize: An comprehensive overview.pptx
Arshad Shaikh
 
Gladiolous Cultivation practices by AKL.pdf
Gladiolous Cultivation practices by AKL.pdf
kushallamichhame
 
F-BLOCK ELEMENTS POWER POINT PRESENTATIONS
F-BLOCK ELEMENTS POWER POINT PRESENTATIONS
mprpgcwa2024
 
Great Governors' Send-Off Quiz 2025 Prelims IIT KGP
Great Governors' Send-Off Quiz 2025 Prelims IIT KGP
IIT Kharagpur Quiz Club
 
How to use search fetch method in Odoo 18
How to use search fetch method in Odoo 18
Celine George
 
How to Manage Different Customer Addresses in Odoo 18 Accounting
How to Manage Different Customer Addresses in Odoo 18 Accounting
Celine George
 
English 3 Quarter 1_LEwithLAS_Week 1.pdf
English 3 Quarter 1_LEwithLAS_Week 1.pdf
DeAsisAlyanajaneH
 
Public Health For The 21st Century 1st Edition Judy Orme Jane Powell
Public Health For The 21st Century 1st Edition Judy Orme Jane Powell
trjnesjnqg7801
 
Aprendendo Arquitetura Framework Salesforce - Dia 02
Aprendendo Arquitetura Framework Salesforce - Dia 02
Mauricio Alexandre Silva
 
Q1_TLE 8_Week 1- Day 1 tools and equipment
Q1_TLE 8_Week 1- Day 1 tools and equipment
clairenotado3
 
Ad

R workshop iii -- 3 hours to learn ggplot2 series