SlideShare a Scribd company logo
Representation Learning in Large Attributed Graphs
-­‐
-­‐
-­‐
-­‐
-­‐
Social  network  
Human  Disease  Network  
[Barabasi 2007]
Food  Web  [2007]
Terrorist  Network
[Krebs  2002]Internet  (AS)  [2005]
Gene  Regulatory  Network  
[Decourty 2008]
Protein  Interactions  
[breast  cancer]
Political  blogs
Power  grid
input 0 …
1 …
0 …
Feature	
  
Engineering
features
1 …
1 … 0
0
1
0
0
Learning	
  
AlgorithmModel
Prediction	
  Task
Link	
  prediction
Classification	
  
Anomaly	
  detection
input 0 …
1 …
0 …
Feature	
  
Engineering
features
1 …
1 … 0
0
1
0
0
Learning	
  
AlgorithmModel
Prediction	
  Task
Automatic	
  
Feature	
  Learning
Link	
  prediction
Classification	
  
Anomaly	
  detection
§ Goal:  Learn  representation  (features)  for  a  set  of  graph  
elements  (nodes,  edges,  etc.)
§ Key  intuition:  Map  the  graph  elements  (e.g.,  nodes)  to  the  
d-­‐dimension  space,  while  preserving  node  similarity
§ Use  the  features  for  any  downstream  prediction  task
Recent  work:  Map  nodes  based  on  their  proximity  in  the  
input  graph  – (nearby  nodes  are  close  together)
DeepWalk Model
Perrozi et	
  al.	
  KDD	
  2014
Recent  work:  Map  nodes  based  on  their  proximity  in  the  
input  graph  – (nearby  nodes  are  close  together)
How  to  get  nearby  nodes?
Perrozi et	
  al.	
  KDD	
  2014
Grover	
  et	
  al.	
  KDD	
  2016
Recent  work:  Map  nodes  based  on  their  proximity  in  the  
input  graph  – (nearby  nodes  are  close  together)
§ A  (conditional)  walk/path  is  a  finite  sequence  of  adjacent  
vertices  in  the  graph
How  to  get  nearby  nodes?
Perrozi et	
  al.	
  KDD	
  2014
Grover	
  et	
  al.	
  KDD	
  2016
V1
V3
V4
V2
V5
The  random  walk  traversed  link  V1  -­‐-­‐-­‐ V2
Evaluating  next  step  at  node  V2
Mikolov et	
  al.	
  ICLR	
  2013
Perrozi et	
  al.	
  KDD	
  2014
focus	
  vertex
Representation Learning in Large Attributed Graphs
§ No  support  for  inductive/transfer  learning
• features  are  learned  for  node  identities  
• features  do  not  generalize  beyond  the  input  graph
§ Map  nodes  based  on  their  proximity  only
§ No  notion  of  attributes
§ No  notion  of  structural  similarity
Communities:  cohesive  subsets  of  nodes
Roles:  represent  structural  patterns
-­‐ two  nodes  belong  to  the  same  role  if  they’ve  similar  structural  patterns
Cj#
Ci#
Ck#
Rossi	
  &	
  Ahmed	
  TKDE	
  2015
Ahmed	
  et	
  al.	
  AAAI	
  2017
Goal:  Find  a  mapping  of  nodes  to  d-­‐dimensions  that  preserves  
proximity  and  node  similarity
Using  structure  +  attributes  (if  any)
Ahmed	
  et.	
  al	
  2017
A  (conditional)  attributed  walk  is  a  finite  sequence  of  adjacent  
node  types  (words)  in  the  graph
Ahmed	
  et.	
  al	
  2017
The  random  walk  traversed  link                            ,  
Evaluating  next  step  at  node  V2
focus	
  vertex
Ahmed	
  et.	
  al	
  2017
G1
1
G2
3
2
G3
4
G4
5
6
G5
7
8
G6
9
G7
10
11
12
G9
15
G8
13
14
Network  Motifs:  Simple  Building  Blocks  of  Complex  Networks  – [Milo  et  al.  – Science  2002]
The  Structure  and  Function  of  Complex  Networks  – [Newman  – Siam  Review  2003]
Applied  to  food,  biologcal,  genetic,  neural,  web,  and  other  networks
§ Predict  which  pairs  of  nodes  are  likely  to  connect
§ Applications: social  network  analysis,  biological  networks,  
terrorist  networks,  etc.
Deepwalk (DW)  – Perrozi et  al.  KDD  2014
node2vec    (N2V)  – Grover  et  al.  KDD  2016
LINE:  Tang  et  al.  – WWW  2015
1 2 4 8 12 16
0
2
4
6
8
10
12
14
16
Number of processing units
Speedup
socfb−MIT
bio−dmela
soc−gowalla
tech−RL−caida
web−wikipedia09
1 2 4 8 12 16
0
2
4
6
8
10
12
14
16
Number of processing units
Speedup
Strong  scaling  results
Using  Intel  Xeon  E5-­‐2687W  server,  16  cores
Motif  Counting
§ We  propose  a  generic  framework  for  learning  representation  
in  large  attributed  graphs
§ Maps  nodes  based  on  Structural  similarity  +  proximity  +  
attributes  (if  any)
§ Learns  universal  features  that  can  generalize  across  
networks/graphs
§ Useful  for  inductive/transfer learning
§ Scalable  for  large  graphs
§ Generalizing  other  deep  graph  models
§ Theoretical  analysis  
§ Choice  of  mapping  functions
§ Impact  of  sampling  strategy  
§ Evaluation  on  other  ML  tasks
§ Efficient  estimation  of  word  representations  in  vector  space.  ICLR  2013  [Mikolov et.  al]
§ A  Framework  for  Generalizing  Graph-­‐based  Representation  Learning  Methods.  arXiv:1709.04596    2017  [Ahmed  et.  al]
§ Role  Discovery  in  Networks.  TKDE  2015  [Rossi  &  Ahmed]
§ A  Higher-­‐order  Latent  Space  Network  Model.  AAAI  2017  [Ahmed,  Rossi,  Willke,  Zhou]
§ node2vec:  Scalable  Feature  Learning  for  Networks.  KDD  2016  [Grover,  Leskovec]
§ DeepWalk:  online  learning  of  social  representations.  KDD  2014  [Perozzi,  Al-­‐Rafou,  Skiena]
§ Efficient  Graphlet Counting  for  Large  Networks.  ICDM  2015,  [Ahmed  et  al.]
§ Graphlet Decomposition:  Framework,  Algorithms,  and  Applications.  J.  Know.  &  Info.  2016  [Ahmed  et  al.]
§ Network  Motifs:  Simple  Building  Blocks  of  Complex  Networks.  Science  2002,  [Milo  et  al.]
§ Uncovering  Biological  Network  Function  via  Graphlet Degree  Signatures.  Cancer  Informatics  2008  [Milenković-­‐Pržulj]
§ Graph  Kernels.  JMLR  2010,  [Vishwanathan et  al.]
§ The  Structure   and  Function  of  Complex  Networks.  SIAM  Review  2003,  [Newman]
§ Biological  network  comparison  using  graphlet degree  distribution.  Bioinformatics  2007  [Pržulj]
§ Efficient  Graphlet Kernels  for  Large  Graph  Comparison.  AISTAT  2009  [Shervashidze et  al.]
§ Local  structure   in  social  networks.  Sociological  methodology  1976,  [Holland-­‐Leinhardt]
§ The  strength   of  weak  ties:  A  network  theory  revisited.  Sociological  theory 1983  [Granovetter]
Thank  you!
Questions?
nesreen.k.ahmed@intel.com
http://nesreenahmed.com

More Related Content

PPTX
Graph Representation Learning
PDF
Representation Learning on Complex Graphs
PDF
Network embedding
DOCX
Deepwalk vs Node2vec
PDF
DeepWalk: Online Learning of Representations
PDF
Deep Learning for Graphs
PDF
AINL 2016: Alekseev, Nikolenko
PPTX
Natural language processing and transformer models
Graph Representation Learning
Representation Learning on Complex Graphs
Network embedding
Deepwalk vs Node2vec
DeepWalk: Online Learning of Representations
Deep Learning for Graphs
AINL 2016: Alekseev, Nikolenko
Natural language processing and transformer models

What's hot (20)

PPTX
Machine learning with graph
PDF
Big Data Intelligence: from Correlation Discovery to Causal Reasoning
PDF
network mining and representation learning
PPTX
20191107 deeplearningapproachesfornetworks
PPTX
Higher-order clustering coefficients at Purdue CSoI
PDF
Architecture Design for Deep Neural Networks I
PPTX
Social Network Analysis and Visualization
PDF
Dagstuhl 2013 - Montali - On the Relationship between OBDA and Relational Map...
PDF
LCF: A Temporal Approach to Link Prediction in Dynamic Social Networks
PDF
Interpretation of the biological knowledge using networks approach
PDF
Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace
PDF
3D 딥러닝 동향
PDF
Convolutional neural networks for image classification — evidence from Kaggle...
PDF
[CS570] Machine Learning Team Project (I know what items really are)
PPTX
Link Prediction in (Partially) Aligned Heterogeneous Social Networks
PDF
The Hidden Geometry of Multiplex Networks @ Next Generation Network Analytics
PPTX
Probabilistic Relational Models for Link Prediction Problem
PDF
Geometric correlations in multiplexes and how they make them more robust
PPTX
VLDB 2015 Tutorial: On Uncertain Graph Modeling and Queries
PPTX
Networks, Deep Learning and COVID-19
Machine learning with graph
Big Data Intelligence: from Correlation Discovery to Causal Reasoning
network mining and representation learning
20191107 deeplearningapproachesfornetworks
Higher-order clustering coefficients at Purdue CSoI
Architecture Design for Deep Neural Networks I
Social Network Analysis and Visualization
Dagstuhl 2013 - Montali - On the Relationship between OBDA and Relational Map...
LCF: A Temporal Approach to Link Prediction in Dynamic Social Networks
Interpretation of the biological knowledge using networks approach
Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace
3D 딥러닝 동향
Convolutional neural networks for image classification — evidence from Kaggle...
[CS570] Machine Learning Team Project (I know what items really are)
Link Prediction in (Partially) Aligned Heterogeneous Social Networks
The Hidden Geometry of Multiplex Networks @ Next Generation Network Analytics
Probabilistic Relational Models for Link Prediction Problem
Geometric correlations in multiplexes and how they make them more robust
VLDB 2015 Tutorial: On Uncertain Graph Modeling and Queries
Networks, Deep Learning and COVID-19
Ad

Similar to Representation Learning in Large Attributed Graphs (20)

PDF
High-Performance Graph Analysis and Modeling
PPTX
Using Set Cover to Optimize a Large-Scale Low Latency Distributed Graph
PDF
Automating Software Development Using Artificial Intelligence (AI)
PDF
Principles of Data Visualization
PDF
ArXiv Literature Exploration using Social Network Analysis
PDF
The Future is Big Graphs: A Community View on Graph Processing Systems
PPTX
Leveraging Multiple GPUs and CPUs for Graphlet Counting in Large Networks
PDF
Information Technology in Industry(ITII) - November Issue 2018
DOCX
ThesisProposal
PPT
Integrating GIS utility data in the UK
PDF
Architectural Support for Model-driven Performance Prediction of Distributed ...
PPTX
Real time ddos attack , detection and prevention
PPTX
03 interlinking-dass
PDF
Graph based Clustering
PPTX
Image generation using Aritificial intellegence and Generative Adversarial Ne...
PDF
From Signal to Symbols
PDF
Burnaev and Notchenko. Skoltech. Bridging gap between 2D and 3D with Deep Lea...
PDF
Script Identification for printed document images at text-line level using DC...
PDF
Semi-Supervised Classification with Graph Convolutional Networks @ICLR2017読み会
PDF
LPCNN: convolutional neural network for link prediction based on network stru...
High-Performance Graph Analysis and Modeling
Using Set Cover to Optimize a Large-Scale Low Latency Distributed Graph
Automating Software Development Using Artificial Intelligence (AI)
Principles of Data Visualization
ArXiv Literature Exploration using Social Network Analysis
The Future is Big Graphs: A Community View on Graph Processing Systems
Leveraging Multiple GPUs and CPUs for Graphlet Counting in Large Networks
Information Technology in Industry(ITII) - November Issue 2018
ThesisProposal
Integrating GIS utility data in the UK
Architectural Support for Model-driven Performance Prediction of Distributed ...
Real time ddos attack , detection and prevention
03 interlinking-dass
Graph based Clustering
Image generation using Aritificial intellegence and Generative Adversarial Ne...
From Signal to Symbols
Burnaev and Notchenko. Skoltech. Bridging gap between 2D and 3D with Deep Lea...
Script Identification for printed document images at text-line level using DC...
Semi-Supervised Classification with Graph Convolutional Networks @ICLR2017読み会
LPCNN: convolutional neural network for link prediction based on network stru...
Ad

More from Nesreen K. Ahmed (6)

PDF
Sampling from Massive Graph Streams: A Unifying Framework
PDF
The Power of Motif Counting Theory, Algorithms, and Applications for Large Gr...
PDF
Sampling for Approximate Bipartite Network Projection
PDF
On Sampling from Massive Graph Streams
PDF
Graph Sample and Hold: A Framework for Big Graph Analytics
PDF
Fast Graphlet Decomposition: Theory, Algorithms, and Applications
Sampling from Massive Graph Streams: A Unifying Framework
The Power of Motif Counting Theory, Algorithms, and Applications for Large Gr...
Sampling for Approximate Bipartite Network Projection
On Sampling from Massive Graph Streams
Graph Sample and Hold: A Framework for Big Graph Analytics
Fast Graphlet Decomposition: Theory, Algorithms, and Applications

Recently uploaded (20)

PDF
annual-report-2024-2025 original latest.
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PPT
Quality review (1)_presentation of this 21
PPTX
Introduction to Knowledge Engineering Part 1
PPTX
Supervised vs unsupervised machine learning algorithms
PDF
Optimise Shopper Experiences with a Strong Data Estate.pdf
PPTX
STERILIZATION AND DISINFECTION-1.ppthhhbx
PDF
.pdf is not working space design for the following data for the following dat...
PDF
Introduction to Data Science and Data Analysis
PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PDF
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
PPTX
SAP 2 completion done . PRESENTATION.pptx
PPT
Reliability_Chapter_ presentation 1221.5784
PDF
Business Analytics and business intelligence.pdf
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PDF
[EN] Industrial Machine Downtime Prediction
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PDF
Introduction to the R Programming Language
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PPTX
Database Infoormation System (DBIS).pptx
annual-report-2024-2025 original latest.
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
Quality review (1)_presentation of this 21
Introduction to Knowledge Engineering Part 1
Supervised vs unsupervised machine learning algorithms
Optimise Shopper Experiences with a Strong Data Estate.pdf
STERILIZATION AND DISINFECTION-1.ppthhhbx
.pdf is not working space design for the following data for the following dat...
Introduction to Data Science and Data Analysis
Introduction-to-Cloud-ComputingFinal.pptx
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
SAP 2 completion done . PRESENTATION.pptx
Reliability_Chapter_ presentation 1221.5784
Business Analytics and business intelligence.pdf
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
[EN] Industrial Machine Downtime Prediction
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
Introduction to the R Programming Language
STUDY DESIGN details- Lt Col Maksud (21).pptx
Database Infoormation System (DBIS).pptx

Representation Learning in Large Attributed Graphs

  • 2. -­‐ -­‐ -­‐ -­‐ -­‐ Social  network   Human  Disease  Network   [Barabasi 2007] Food  Web  [2007] Terrorist  Network [Krebs  2002]Internet  (AS)  [2005] Gene  Regulatory  Network   [Decourty 2008] Protein  Interactions   [breast  cancer] Political  blogs Power  grid
  • 3. input 0 … 1 … 0 … Feature   Engineering features 1 … 1 … 0 0 1 0 0 Learning   AlgorithmModel Prediction  Task Link  prediction Classification   Anomaly  detection
  • 4. input 0 … 1 … 0 … Feature   Engineering features 1 … 1 … 0 0 1 0 0 Learning   AlgorithmModel Prediction  Task Automatic   Feature  Learning Link  prediction Classification   Anomaly  detection
  • 5. § Goal:  Learn  representation  (features)  for  a  set  of  graph   elements  (nodes,  edges,  etc.) § Key  intuition:  Map  the  graph  elements  (e.g.,  nodes)  to  the   d-­‐dimension  space,  while  preserving  node  similarity § Use  the  features  for  any  downstream  prediction  task
  • 6. Recent  work:  Map  nodes  based  on  their  proximity  in  the   input  graph  – (nearby  nodes  are  close  together) DeepWalk Model Perrozi et  al.  KDD  2014
  • 7. Recent  work:  Map  nodes  based  on  their  proximity  in  the   input  graph  – (nearby  nodes  are  close  together) How  to  get  nearby  nodes? Perrozi et  al.  KDD  2014 Grover  et  al.  KDD  2016
  • 8. Recent  work:  Map  nodes  based  on  their  proximity  in  the   input  graph  – (nearby  nodes  are  close  together) § A  (conditional)  walk/path  is  a  finite  sequence  of  adjacent   vertices  in  the  graph How  to  get  nearby  nodes? Perrozi et  al.  KDD  2014 Grover  et  al.  KDD  2016
  • 9. V1 V3 V4 V2 V5 The  random  walk  traversed  link  V1  -­‐-­‐-­‐ V2 Evaluating  next  step  at  node  V2
  • 10. Mikolov et  al.  ICLR  2013 Perrozi et  al.  KDD  2014 focus  vertex
  • 12. § No  support  for  inductive/transfer  learning • features  are  learned  for  node  identities   • features  do  not  generalize  beyond  the  input  graph § Map  nodes  based  on  their  proximity  only § No  notion  of  attributes § No  notion  of  structural  similarity
  • 13. Communities:  cohesive  subsets  of  nodes Roles:  represent  structural  patterns -­‐ two  nodes  belong  to  the  same  role  if  they’ve  similar  structural  patterns Cj# Ci# Ck# Rossi  &  Ahmed  TKDE  2015 Ahmed  et  al.  AAAI  2017
  • 14. Goal:  Find  a  mapping  of  nodes  to  d-­‐dimensions  that  preserves   proximity  and  node  similarity Using  structure  +  attributes  (if  any)
  • 16. A  (conditional)  attributed  walk  is  a  finite  sequence  of  adjacent   node  types  (words)  in  the  graph Ahmed  et.  al  2017
  • 17. The  random  walk  traversed  link                            ,   Evaluating  next  step  at  node  V2
  • 20. G1 1 G2 3 2 G3 4 G4 5 6 G5 7 8 G6 9 G7 10 11 12 G9 15 G8 13 14 Network  Motifs:  Simple  Building  Blocks  of  Complex  Networks  – [Milo  et  al.  – Science  2002] The  Structure  and  Function  of  Complex  Networks  – [Newman  – Siam  Review  2003] Applied  to  food,  biologcal,  genetic,  neural,  web,  and  other  networks
  • 21. § Predict  which  pairs  of  nodes  are  likely  to  connect § Applications: social  network  analysis,  biological  networks,   terrorist  networks,  etc.
  • 22. Deepwalk (DW)  – Perrozi et  al.  KDD  2014 node2vec    (N2V)  – Grover  et  al.  KDD  2016 LINE:  Tang  et  al.  – WWW  2015
  • 23. 1 2 4 8 12 16 0 2 4 6 8 10 12 14 16 Number of processing units Speedup socfb−MIT bio−dmela soc−gowalla tech−RL−caida web−wikipedia09 1 2 4 8 12 16 0 2 4 6 8 10 12 14 16 Number of processing units Speedup Strong  scaling  results Using  Intel  Xeon  E5-­‐2687W  server,  16  cores Motif  Counting
  • 24. § We  propose  a  generic  framework  for  learning  representation   in  large  attributed  graphs § Maps  nodes  based  on  Structural  similarity  +  proximity  +   attributes  (if  any) § Learns  universal  features  that  can  generalize  across   networks/graphs § Useful  for  inductive/transfer learning § Scalable  for  large  graphs
  • 25. § Generalizing  other  deep  graph  models § Theoretical  analysis   § Choice  of  mapping  functions § Impact  of  sampling  strategy   § Evaluation  on  other  ML  tasks
  • 26. § Efficient  estimation  of  word  representations  in  vector  space.  ICLR  2013  [Mikolov et.  al] § A  Framework  for  Generalizing  Graph-­‐based  Representation  Learning  Methods.  arXiv:1709.04596    2017  [Ahmed  et.  al] § Role  Discovery  in  Networks.  TKDE  2015  [Rossi  &  Ahmed] § A  Higher-­‐order  Latent  Space  Network  Model.  AAAI  2017  [Ahmed,  Rossi,  Willke,  Zhou] § node2vec:  Scalable  Feature  Learning  for  Networks.  KDD  2016  [Grover,  Leskovec] § DeepWalk:  online  learning  of  social  representations.  KDD  2014  [Perozzi,  Al-­‐Rafou,  Skiena] § Efficient  Graphlet Counting  for  Large  Networks.  ICDM  2015,  [Ahmed  et  al.] § Graphlet Decomposition:  Framework,  Algorithms,  and  Applications.  J.  Know.  &  Info.  2016  [Ahmed  et  al.] § Network  Motifs:  Simple  Building  Blocks  of  Complex  Networks.  Science  2002,  [Milo  et  al.] § Uncovering  Biological  Network  Function  via  Graphlet Degree  Signatures.  Cancer  Informatics  2008  [Milenković-­‐Pržulj] § Graph  Kernels.  JMLR  2010,  [Vishwanathan et  al.] § The  Structure   and  Function  of  Complex  Networks.  SIAM  Review  2003,  [Newman] § Biological  network  comparison  using  graphlet degree  distribution.  Bioinformatics  2007  [Pržulj] § Efficient  Graphlet Kernels  for  Large  Graph  Comparison.  AISTAT  2009  [Shervashidze et  al.] § Local  structure   in  social  networks.  Sociological  methodology  1976,  [Holland-­‐Leinhardt] § The  strength   of  weak  ties:  A  network  theory  revisited.  Sociological  theory 1983  [Granovetter]