This document discusses using machine learning boosting techniques to achieve uniformity in particle physics applications. It introduces the uBoost and uGB+FL (gradient boosting with flatness loss) approaches, which aim to produce flat predictions along features of interest, like particle mass. This provides advantages over standard boosting by reducing non-uniformities that could create false signals. The document also proposes a non-uniformity measure and minimizing this with a flatness loss term during gradient boosting training. Examples applying these techniques to rare decay analysis, particle identification, and triggering are shown to achieve more uniform efficiencies than standard boosting.