SlideShare a Scribd company logo
IBM | spark.tc
Scotland Data Science Meetup
Spark SQL + DataFrames + Catalyst + Data Sources API
Chris Fregly, Principal Data Solutions Engineer
IBM Spark Technology Center
Oct 13, 2015
Power of data. Simplicity of design. Speed of innovation.
IBM | spark.tc
Announcements
Thanks to !
TechCube Incubator!!!
!
Georgia Boyle!
Organizer, London Spark Meetup!
!
IBM | spark.tc
Who am I?! !
Streaming Data Engineer!
Netflix Open Source Committer!
!
Data Solutions Engineer!
Apache Contributor!
!
Principal Data Solutions Engineer!
IBM Technology Center!
Meetup Organizer!
Advanced Apache Meetup!
Book Author!
Advanced Spark (2016)!
IBM | spark.tc
meetup.com/Advanced-Apache-Spark-Meetup/!
Total Spark Experts: 1200+ in only 3 mos!!
#5 most active Spark Meetup in the world!!
!
Goals!
Dig deep into the Spark & extended-Spark codebase!
!
Study integrations such as Cassandra, ElasticSearch,!
Tachyon, S3, BlinkDB, Mesos, YARN, Kafka, R, etc!
!
Surface and share the patterns and idioms of these !
well-designed, distributed, big data components!
IBM | spark.tc
Recent Events
Cassandra Summit 2015!
Real-time Advanced Analytics w/ Spark & Cassandra!
!
!
!
Strata NYC 2015!
Practical Data Science w/ Spark: Recommender Systems!
!
All Slides Available on !
Slideshare!
http://slideshare.net/cfregly!
IBM | spark.tc
Upcoming Advanced Apache Spark Meetups!
Project Tungsten Data Structs/Algos for CPU/Memory Optimization!
Nov 12th, 2015!
Text-based Advanced Analytics and Machine Learning!
Jan 14th, 2016!
ElasticSearch-Spark Connector w/ Costin Leau (Elastic.co) & Me!
Feb 16th, 2016!
Spark Internals Deep Dive!
Mar 24th, 2016!
Spark SQL Catalyst Optimizer Deep Dive !
Apr 21st, 2016!
IBM | spark.tc
Freg-a-palooza Upcoming World Tour
  London Spark Meetup (Oct 12th)!
  Scotland Data Science Meetup (Oct 13th)!
  Dublin Spark Meetup (Oct 15th)!
  Barcelona Spark Meetup (Oct 20th)!
  Madrid Spark/Big Data Meetup (Oct 22nd)!
  Paris Spark Meetup (Oct 26th)!
  Amsterdam Spark Summit (Oct 27th – Oct 29th)!
  Delft Dutch Data Science Meetup (Oct 29th) !
  Brussels Spark Meetup (Oct 30th)!
  Zurich Big Data Developers Meetup (Nov 2nd)!
High probability!
I’ll end up in jail!
or married!!
IBM | spark.tc
Slides and Videos
Slides!
Links posted in Meetup directly!
!
Videos!
Most talks are live streamed and/or video recorded!
Links posted in Meetup directly!
!
All Slides Available on Slideshare!
http://slideshare.net/cfregly!
IBM | spark.tc
Last Meetup (Spark Wins 100 TB Daytona GraySort)
On-disk only, in-memory caching disabled!!sortbenchmark.org/ApacheSpark2014.pdf!
Spark SQL + DataFrames

Catalyst + Data Sources API
IBM | spark.tc
Topics of this Talk!
 DataFrames!
 Catalyst Optimizer and Query Plans!
 Data Sources API!
 Creating and Contributing Custom Data Source!
!
 Partitions, Pruning, Pushdowns!
!
 Native + Third-Party Data Source Impls!
!
 Spark SQL Performance Tuning!
IBM | spark.tc
DataFrames!
Inspired by R and Pandas DataFrames!
Cross language support!
SQL, Python, Scala, Java, R!
Levels performance of Python, Scala, Java, and R!
Generates JVM bytecode vs serialize/pickle objects to Python!
DataFrame is Container for Logical Plan!
Transformations are lazy and represented as a tree!
Catalyst Optimizer creates physical plan!
DataFrame.rdd returns the underlying RDD if needed!
Custom UDF using registerFunction()
New, experimental UDAF support!
Use DataFrames !
instead of RDDs!!!
IBM | spark.tc
Catalyst Optimizer!
Converts logical plan to physical plan!
Manipulate & optimize DataFrame transformation tree!
Subquery elimination – use aliases to collapse subqueries!
Constant folding – replace expression with constant!
Simplify filters – remove unnecessary filters!
Predicate/filter pushdowns – avoid unnecessary data load!
Projection collapsing – avoid unnecessary projections!
Hooks for custom rules!
Rules = Scala Case Classes!
val newPlan = MyFilterRule(analyzedPlan)
Implements!
oas.sql.catalyst.rules.Rule!
Apply to any
plan stage!
IBM | spark.tc
Plan Debugging!
gendersCsvDF.select($"id", $"gender").filter("gender != 'F'").filter("gender != 'M'").explain(true)!
Requires explain(true)!
DataFrame.queryExecution.logical!
DataFrame.queryExecution.analyzed!
DataFrame.queryExecution.optimizedPlan!
DataFrame.queryExecution.executedPlan!
IBM | spark.tc
Plan Visualization & Join/Aggregation Metrics!
Effectiveness !
of Filter!
Cost-based !
Optimization!
is Applied!
Peak Memory for!
Joins and Aggs!
Optimized !
CPU-cache-aware!
Binary Format!
Minimizes GC &!
Improves Join Perf!
(Project Tungsten)!
New in Spark 1.5!!
IBM | spark.tc
Data Sources API!
Relations (o.a.s.sql.sources.interfaces.scala)!
BaseRelation (abstract class): Provides schema of data!
TableScan (impl): Read all data from source, construct rows !
PrunedFilteredScan (impl): Read with column pruning & predicate pushdowns
InsertableRelation (impl): Insert or overwrite data based on SaveMode enum!
RelationProvider (trait/interface): Handles user options, creates BaseRelation!
Execution (o.a.s.sql.execution.commands.scala)!
RunnableCommand (trait/interface)!
ExplainCommand(impl: case class)!
CacheTableCommand(impl: case class)!
Filters (o.a.s.sql.sources.filters.scala)!
Filter (abstract class for all filter pushdowns for this data source)!
EqualTo (impl)!
GreaterThan (impl)!
StringStartsWith (impl)!
IBM | spark.tc
Creating a Custom Data Source!
Study Existing Native and Third-Party Data Source Impls!
!
Native: JDBC (o.a.s.sql.execution.datasources.jdbc)!
class JDBCRelation extends BaseRelation
with PrunedFilteredScan
with InsertableRelation
!
Third-Party: Cassandra (o.a.s.sql.cassandra)!
class CassandraSourceRelation extends BaseRelation
with PrunedFilteredScan
with InsertableRelation!
!
IBM | spark.tc
Contributing a Custom Data Source!
spark-packages.org!
Managed by!
Contains links to externally-managed github projects!
Ratings and comments!
Spark version requirements of each package!
Examples!
https://github.com/databricks/spark-csv!
https://github.com/databricks/spark-avro!
https://github.com/databricks/spark-redshift!
Partitions, Pruning, Pushdowns
IBM | spark.tc
Demo Dataset (from previous Spark After Dark talks)!
RATINGS !
========!
UserID,ProfileID,Rating !
(1-10)!
GENDERS!
========!
UserID,Gender !
(M,F,U)!
<-- Totally -->!
Anonymous !
IBM | spark.tc
Partitions!
Partition based on data usage patterns!
/genders.parquet/gender=M/…
/gender=F/… <-- Use case: access users by gender
/gender=U/…
Partition Discovery!
On read, infer partitions from organization of data (ie. gender=F)!
Dynamic Partitions!
Upon insert, dynamically create partitions!
Specify field to use for each partition (ie. gender)!
SQL: INSERT TABLE genders PARTITION (gender) SELECT …
DF: gendersDF.write.format(”parquet").partitionBy(”gender”).save(…)
IBM | spark.tc
Pruning!
Partition Pruning!
Filter out entire partitions of rows on partitioned data
SELECT id, gender FROM genders where gender = ‘U’
Column Pruning!
Filter out entire columns for all rows if not required!
Extremely useful for columnar storage formats!
Parquet, ORC!
SELECT id, gender FROM genders
!
IBM | spark.tc
Pushdowns!
Predicate (aka Filter) Pushdowns!
Predicate returns {true, false} for a given function/condition!
Filters rows as deep into the data source as possible!
Data Source must implement PrunedFilteredScan!
Native Spark SQL Data Sources
IBM | spark.tc
Spark SQL Native Data Sources - Source Code!
IBM | spark.tc
JSON Data Source!
DataFrame!
val ratingsDF = sqlContext.read.format("json")
.load("file:/root/pipeline/datasets/dating/ratings.json.bz2")
-- or --!
val ratingsDF = sqlContext.read.json
("file:/root/pipeline/datasets/dating/ratings.json.bz2")
SQL Code!
CREATE TABLE genders USING json
OPTIONS
(path "file:/root/pipeline/datasets/dating/genders.json.bz2")
Convenience Method
IBM | spark.tc
JDBC Data Source!
Add Driver to Spark JVM System Classpath!
$ export SPARK_CLASSPATH=<jdbc-driver.jar>
DataFrame!
val jdbcConfig = Map("driver" -> "org.postgresql.Driver",
"url" -> "jdbc:postgresql:hostname:port/database",
"dbtable" -> ”schema.tablename")
df.read.format("jdbc").options(jdbcConfig).load()
SQL!
CREATE TABLE genders USING jdbc
OPTIONS (url, dbtable, driver, …)
IBM | spark.tc
Parquet Data Source!
Configuration!
spark.sql.parquet.filterPushdown=true!
spark.sql.parquet.mergeSchema=true
spark.sql.parquet.cacheMetadata=true!
spark.sql.parquet.compression.codec=[uncompressed,snappy,gzip,lzo]
DataFrames!
val gendersDF = sqlContext.read.format("parquet")
.load("file:/root/pipeline/datasets/dating/genders.parquet")!
gendersDF.write.format("parquet").partitionBy("gender")
.save("file:/root/pipeline/datasets/dating/genders.parquet")
SQL!
CREATE TABLE genders USING parquet
OPTIONS
(path "file:/root/pipeline/datasets/dating/genders.parquet")
IBM | spark.tc
ORC Data Source!
Configuration!
spark.sql.orc.filterPushdown=true
DataFrames!
val gendersDF = sqlContext.read.format("orc")
.load("file:/root/pipeline/datasets/dating/genders")!
gendersDF.write.format("orc").partitionBy("gender")
.save("file:/root/pipeline/datasets/dating/genders")
SQL!
CREATE TABLE genders USING orc
OPTIONS
(path "file:/root/pipeline/datasets/dating/genders")
Third-Party Data Sources

spark-packages.org
IBM | spark.tc
CSV Data Source (Databricks)!
Github!
https://github.com/databricks/spark-csv!
!
Maven!
com.databricks:spark-csv_2.10:1.2.0!
!
Code!
val gendersCsvDF = sqlContext.read
.format("com.databricks.spark.csv")
.load("file:/root/pipeline/datasets/dating/gender.csv.bz2")
.toDF("id", "gender") toDF() defines column names!
IBM | spark.tc
Avro Data Source (Databricks)!
Github!
https://github.com/databricks/spark-avro!
!
Maven!
com.databricks:spark-avro_2.10:2.0.1!
!
Code!
val df = sqlContext.read
.format("com.databricks.spark.avro")
.load("file:/root/pipeline/datasets/dating/gender.avro")
!
IBM | spark.tc
ElasticSearch Data Source (Elastic.co)!
Github!
https://github.com/elastic/elasticsearch-hadoop!
Maven!
org.elasticsearch:elasticsearch-spark_2.10:2.1.0!
Code!
val esConfig = Map("pushdown" -> "true", "es.nodes" -> "<hostname>",
"es.port" -> "<port>")
df.write.format("org.elasticsearch.spark.sql”).mode(SaveMode.Overwrite)
.options(esConfig).save("<index>/<document>")
IBM | spark.tc
Cassandra Data Source (DataStax)!
Github!
https://github.com/datastax/spark-cassandra-connector!
Maven!
com.datastax.spark:spark-cassandra-connector_2.10:1.5.0-M1
Code!
ratingsDF.write
.format("org.apache.spark.sql.cassandra")
.mode(SaveMode.Append)
.options(Map("keyspace"->"<keyspace>",
"table"->"<table>")).save(…)
IBM | spark.tc
Cassandra Pushdown Rules!
Determines which filter predicates can be pushed down to Cassandra.!
* 1. Only push down no-partition key column predicates with =, >, <, >=, <= predicate!
* 2. Only push down primary key column predicates with = or IN predicate.!
* 3. If there are regular columns in the pushdown predicates, they should have!
* at least one EQ expression on an indexed column and no IN predicates.!
* 4. All partition column predicates must be included in the predicates to be pushed down,!
* only the last part of the partition key can be an IN predicate. For each partition column,!
* only one predicate is allowed.!
* 5. For cluster column predicates, only last predicate can be non-EQ predicate!
* including IN predicate, and preceding column predicates must be EQ predicates.!
* If there is only one cluster column predicate, the predicates could be any non-IN
predicate.!
* 6. There is no pushdown predicates if there is any OR condition or NOT IN condition.!
* 7. We're not allowed to push down multiple predicates for the same column if any of them!
* is equality or IN predicate.!
spark-cassandra-connector/…/o.a.s.sql.cassandra.PredicatePushDown.scala!
IBM | spark.tc
Special Thanks to DataStax!!!!
Russel Spitzer!
@RussSpitzer!
(He created the following few slides)!
(These guys built a lot of the connector.)!
IBM | spark.tc
Spark-Cassandra Architecture!
IBM | spark.tc
Spark-Cassandra Data Locality!
IBM | spark.tc
Spark-Cassandra Node-specific CQL Queries!
http://www.slideshare.net/CesareCugnasco/indexing-3dimensional-trajectories-apache-spark-and-cassandra-integration!
IBM | spark.tc
Spark-Cassandra Configuration:input.page.row.size
IBM | spark.tc
Spark-Cassandra Configuration: grouping.key!
IBM | spark.tc
Spark-Cassandra Configuration: size.rows/bytes!
IBM | spark.tc
Spark-Cassandra Configuration: batch.buffer.size!
IBM | spark.tc
Spark-Cassandra Configuration: concurrent.writes!
IBM | spark.tc
Spark-Cassandra Configuration: throughput_mb/s!
IBM | spark.tc
Spark-Cassandra Optimizatins and Next Steps!
By-pass CQL front door!
Bulk read/write directly to SSTables!
Rumored to be in existence!
DataStax Enterprise only?!
Closed Source Alert!!
IBM | spark.tc
Redshift Data Source (Databricks)!
Github!
https://github.com/databricks/spark-redshift!
Maven!
com.databricks:spark-redshift:0.5.0!
Code!
val df: DataFrame = sqlContext.read
.format("com.databricks.spark.redshift")
.option("url", "jdbc:redshift://<hostname>:<port>/<database>…")
.option("query", "select x, count(*) my_table group by x")
.option("tempdir", "s3n://tmpdir")
.load(...)
Copies to S3 for !
fast, parallel reads vs !
single Redshift Master bottleneck!
IBM | spark.tc
Cloudant Data Source (IBM)!
Github!
http://spark-packages.org/package/cloudant/spark-cloudant!
Maven!
com.datastax.spark:spark-cassandra-connector_2.10:1.5.0-M1
Code!
ratingsDF.write.format("com.cloudant.spark")
.mode(SaveMode.Append)
.options(Map("cloudant.host"->"<account>.cloudant.com",
"cloudant.username"->"<username>",
"cloudant.password"->"<password>"))
.save("<filename>")
IBM | spark.tc
DB2 and BigSQL Data Sources (IBM)!
Coming Soon!!
!
!
!
https://github.com/SparkTC/spark-db2!
https://github.com/SparkTC/spark-bigsql!
!
IBM | spark.tc
REST Data Source (Databricks)!
Coming Soon!!
https://github.com/databricks/spark-rest?!
Michael Armbrust!
Spark SQL Lead @ Databricks!
IBM | spark.tc
Simple Data Source (Me and You Guys)!
Coming Right Now!!!
Me!
IBM | spark.tc
SparkSQL Performance Tuning (oas.sql.SQLConf)!
spark.sql.inMemoryColumnarStorage.compressed=true!
Automatically selects column codec based on data!
spark.sql.inMemoryColumnarStorage.batchSize!
Increase as much as possible without OOM – improves compression and GC!
spark.sql.inMemoryPartitionPruning=true!
Enable partition pruning for in-memory partitions!
spark.sql.tungsten.enabled=true!
Code Gen for CPU and Memory Optimizations (Tungsten aka Unsafe Mode)!
spark.sql.shuffle.partitions!
Increase from default 200 for large joins and aggregations!
spark.sql.autoBroadcastJoinThreshold!
Increase to tune this cost-based, physical plan optimization!
spark.sql.hive.metastorePartitionPruning!
Predicate pushdown into the metastore to prune partitions early!
spark.sql.planner.sortMergeJoin!
Prefer sort-merge (vs. hash join) for large joins !
spark.sql.sources.partitionDiscovery.enabled !
& spark.sql.sources.parallelPartitionDiscovery.threshold!
IBM | spark.tc
Related Links!
https://github.com/datastax/spark-cassandra-connector!
http://blog.madhukaraphatak.com/anatomy-of-spark-dataframe-api/!
https://github.com/phatak-dev/anatomy_of_spark_dataframe_api!
https://databricks.com/blog/!
https://www.youtube.com/watch?v=uxuLRiNoDio!
http://www.slideshare.net/RussellSpitzer!
IBM | spark.tc
Freg-a-palooza Upcoming World Tour
  London Spark Meetup (Oct 12th)!
  Scotland Data Science Meetup (Oct 13th)!
  Dublin Spark Meetup (Oct 15th)!
  Barcelona Spark Meetup (Oct 20th)!
  Madrid Spark/Big Data Meetup (Oct 22nd)!
  Paris Spark Meetup (Oct 26th)!
  Amsterdam Spark Summit (Oct 27th – Oct 29th)!
  Delft Dutch Data Science Meetup (Oct 29th) !
  Brussels Spark Meetup (Oct 30th)!
  Zurich Big Data Developers Meetup (Nov 2nd)!
High probability!
I’ll end up in jail!
or married!!
http://spark.tc/datapalooza
IBM Spark Tech Center is Hiring! "
JOnly Fun, Collaborative People!! J
IBM | spark.tc
Sign up for our newsletter at
Thank You!
Power of data. Simplicity of design. Speed of innovation.
Coming to Your City!!!!
Power of data. Simplicity of design. Speed of innovation.
IBM Spark
Ad

Recommended

Advanced Apache Spark Meetup Data Sources API Cassandra Spark Connector Spark...
Advanced Apache Spark Meetup Data Sources API Cassandra Spark Connector Spark...
Chris Fregly
 
Practical Data Science Workshop - Recommendation Systems - Collaborative Filt...
Practical Data Science Workshop - Recommendation Systems - Collaborative Filt...
Chris Fregly
 
Barcelona Spain Apache Spark Meetup Oct 20, 2015: Spark Streaming, Kafka, MLl...
Barcelona Spain Apache Spark Meetup Oct 20, 2015: Spark Streaming, Kafka, MLl...
Chris Fregly
 
Madrid Spark Big Data Bluemix Meetup - Spark Versus Hadoop @ 100 TB Daytona G...
Madrid Spark Big Data Bluemix Meetup - Spark Versus Hadoop @ 100 TB Daytona G...
Chris Fregly
 
Paris Spark Meetup Oct 26, 2015 - Spark After Dark v1.5 - Best of Advanced Ap...
Paris Spark Meetup Oct 26, 2015 - Spark After Dark v1.5 - Best of Advanced Ap...
Chris Fregly
 
Dublin Ireland Spark Meetup October 15, 2015
Dublin Ireland Spark Meetup October 15, 2015
Chris Fregly
 
Spark After Dark: Real time Advanced Analytics and Machine Learning with Spark
Spark After Dark: Real time Advanced Analytics and Machine Learning with Spark
Chris Fregly
 
Brussels Spark Meetup Oct 30, 2015: Spark After Dark 1.5:  Real-time, Advanc...
Brussels Spark Meetup Oct 30, 2015: Spark After Dark 1.5:  Real-time, Advanc...
Chris Fregly
 
Advanced Apache Spark Meetup Project Tungsten Nov 12 2015
Advanced Apache Spark Meetup Project Tungsten Nov 12 2015
Chris Fregly
 
USF Seminar Series: Apache Spark, Machine Learning, Recommendations Feb 05 2016
USF Seminar Series: Apache Spark, Machine Learning, Recommendations Feb 05 2016
Chris Fregly
 
Spark, Similarity, Approximations, NLP, Recommendations - Boulder Denver Spar...
Spark, Similarity, Approximations, NLP, Recommendations - Boulder Denver Spar...
Chris Fregly
 
Advanced Apache Spark Meetup Approximations and Probabilistic Data Structures...
Advanced Apache Spark Meetup Approximations and Probabilistic Data Structures...
Chris Fregly
 
Spark After Dark 2.0 - Apache Big Data Conf - Vancouver - May 11, 2016
Spark After Dark 2.0 - Apache Big Data Conf - Vancouver - May 11, 2016
Chris Fregly
 
Advanced Apache Spark Meetup: How Spark Beat Hadoop @ 100 TB Daytona GraySor...
Advanced Apache Spark Meetup: How Spark Beat Hadoop @ 100 TB Daytona GraySor...
Chris Fregly
 
Advanced Apache Spark Meetup Spark and Elasticsearch 02-15-2016
Advanced Apache Spark Meetup Spark and Elasticsearch 02-15-2016
Chris Fregly
 
Toronto Spark Meetup Dec 14 2015
Toronto Spark Meetup Dec 14 2015
Chris Fregly
 
Advanced Analytics and Recommendations with Apache Spark - Spark Maryland/DC ...
Advanced Analytics and Recommendations with Apache Spark - Spark Maryland/DC ...
Chris Fregly
 
Helsinki Spark Meetup Nov 20 2015
Helsinki Spark Meetup Nov 20 2015
Chris Fregly
 
Zurich, Berlin, Vienna Spark and Big Data Meetup Nov 02 2015
Zurich, Berlin, Vienna Spark and Big Data Meetup Nov 02 2015
Chris Fregly
 
Spark Summit East NYC Meetup 02-16-2016
Spark Summit East NYC Meetup 02-16-2016
Chris Fregly
 
Stockholm Spark Meetup Nov 23 2015 Spark After Dark 1.5
Stockholm Spark Meetup Nov 23 2015 Spark After Dark 1.5
Chris Fregly
 
DC Spark Users Group March 15 2016 - Spark and Netflix Recommendations
DC Spark Users Group March 15 2016 - Spark and Netflix Recommendations
Chris Fregly
 
Copenhagen Spark Meetup Nov 25, 2015
Copenhagen Spark Meetup Nov 25, 2015
Chris Fregly
 
Sydney Spark Meetup Dec 08, 2015
Sydney Spark Meetup Dec 08, 2015
Chris Fregly
 
Singapore Spark Meetup Dec 01 2015
Singapore Spark Meetup Dec 01 2015
Chris Fregly
 
Melbourne Spark Meetup Dec 09 2015
Melbourne Spark Meetup Dec 09 2015
Chris Fregly
 
Dallas DFW Data Science Meetup Jan 21 2016
Dallas DFW Data Science Meetup Jan 21 2016
Chris Fregly
 
Boston Spark Meetup May 24, 2016
Boston Spark Meetup May 24, 2016
Chris Fregly
 
Chicago Spark Meetup 03 01 2016 - Spark and Recommendations
Chicago Spark Meetup 03 01 2016 - Spark and Recommendations
Chris Fregly
 
Atlanta MLconf Machine Learning Conference 09-23-2016
Atlanta MLconf Machine Learning Conference 09-23-2016
Chris Fregly
 

More Related Content

What's hot (20)

Advanced Apache Spark Meetup Project Tungsten Nov 12 2015
Advanced Apache Spark Meetup Project Tungsten Nov 12 2015
Chris Fregly
 
USF Seminar Series: Apache Spark, Machine Learning, Recommendations Feb 05 2016
USF Seminar Series: Apache Spark, Machine Learning, Recommendations Feb 05 2016
Chris Fregly
 
Spark, Similarity, Approximations, NLP, Recommendations - Boulder Denver Spar...
Spark, Similarity, Approximations, NLP, Recommendations - Boulder Denver Spar...
Chris Fregly
 
Advanced Apache Spark Meetup Approximations and Probabilistic Data Structures...
Advanced Apache Spark Meetup Approximations and Probabilistic Data Structures...
Chris Fregly
 
Spark After Dark 2.0 - Apache Big Data Conf - Vancouver - May 11, 2016
Spark After Dark 2.0 - Apache Big Data Conf - Vancouver - May 11, 2016
Chris Fregly
 
Advanced Apache Spark Meetup: How Spark Beat Hadoop @ 100 TB Daytona GraySor...
Advanced Apache Spark Meetup: How Spark Beat Hadoop @ 100 TB Daytona GraySor...
Chris Fregly
 
Advanced Apache Spark Meetup Spark and Elasticsearch 02-15-2016
Advanced Apache Spark Meetup Spark and Elasticsearch 02-15-2016
Chris Fregly
 
Toronto Spark Meetup Dec 14 2015
Toronto Spark Meetup Dec 14 2015
Chris Fregly
 
Advanced Analytics and Recommendations with Apache Spark - Spark Maryland/DC ...
Advanced Analytics and Recommendations with Apache Spark - Spark Maryland/DC ...
Chris Fregly
 
Helsinki Spark Meetup Nov 20 2015
Helsinki Spark Meetup Nov 20 2015
Chris Fregly
 
Zurich, Berlin, Vienna Spark and Big Data Meetup Nov 02 2015
Zurich, Berlin, Vienna Spark and Big Data Meetup Nov 02 2015
Chris Fregly
 
Spark Summit East NYC Meetup 02-16-2016
Spark Summit East NYC Meetup 02-16-2016
Chris Fregly
 
Stockholm Spark Meetup Nov 23 2015 Spark After Dark 1.5
Stockholm Spark Meetup Nov 23 2015 Spark After Dark 1.5
Chris Fregly
 
DC Spark Users Group March 15 2016 - Spark and Netflix Recommendations
DC Spark Users Group March 15 2016 - Spark and Netflix Recommendations
Chris Fregly
 
Copenhagen Spark Meetup Nov 25, 2015
Copenhagen Spark Meetup Nov 25, 2015
Chris Fregly
 
Sydney Spark Meetup Dec 08, 2015
Sydney Spark Meetup Dec 08, 2015
Chris Fregly
 
Singapore Spark Meetup Dec 01 2015
Singapore Spark Meetup Dec 01 2015
Chris Fregly
 
Melbourne Spark Meetup Dec 09 2015
Melbourne Spark Meetup Dec 09 2015
Chris Fregly
 
Dallas DFW Data Science Meetup Jan 21 2016
Dallas DFW Data Science Meetup Jan 21 2016
Chris Fregly
 
Boston Spark Meetup May 24, 2016
Boston Spark Meetup May 24, 2016
Chris Fregly
 
Advanced Apache Spark Meetup Project Tungsten Nov 12 2015
Advanced Apache Spark Meetup Project Tungsten Nov 12 2015
Chris Fregly
 
USF Seminar Series: Apache Spark, Machine Learning, Recommendations Feb 05 2016
USF Seminar Series: Apache Spark, Machine Learning, Recommendations Feb 05 2016
Chris Fregly
 
Spark, Similarity, Approximations, NLP, Recommendations - Boulder Denver Spar...
Spark, Similarity, Approximations, NLP, Recommendations - Boulder Denver Spar...
Chris Fregly
 
Advanced Apache Spark Meetup Approximations and Probabilistic Data Structures...
Advanced Apache Spark Meetup Approximations and Probabilistic Data Structures...
Chris Fregly
 
Spark After Dark 2.0 - Apache Big Data Conf - Vancouver - May 11, 2016
Spark After Dark 2.0 - Apache Big Data Conf - Vancouver - May 11, 2016
Chris Fregly
 
Advanced Apache Spark Meetup: How Spark Beat Hadoop @ 100 TB Daytona GraySor...
Advanced Apache Spark Meetup: How Spark Beat Hadoop @ 100 TB Daytona GraySor...
Chris Fregly
 
Advanced Apache Spark Meetup Spark and Elasticsearch 02-15-2016
Advanced Apache Spark Meetup Spark and Elasticsearch 02-15-2016
Chris Fregly
 
Toronto Spark Meetup Dec 14 2015
Toronto Spark Meetup Dec 14 2015
Chris Fregly
 
Advanced Analytics and Recommendations with Apache Spark - Spark Maryland/DC ...
Advanced Analytics and Recommendations with Apache Spark - Spark Maryland/DC ...
Chris Fregly
 
Helsinki Spark Meetup Nov 20 2015
Helsinki Spark Meetup Nov 20 2015
Chris Fregly
 
Zurich, Berlin, Vienna Spark and Big Data Meetup Nov 02 2015
Zurich, Berlin, Vienna Spark and Big Data Meetup Nov 02 2015
Chris Fregly
 
Spark Summit East NYC Meetup 02-16-2016
Spark Summit East NYC Meetup 02-16-2016
Chris Fregly
 
Stockholm Spark Meetup Nov 23 2015 Spark After Dark 1.5
Stockholm Spark Meetup Nov 23 2015 Spark After Dark 1.5
Chris Fregly
 
DC Spark Users Group March 15 2016 - Spark and Netflix Recommendations
DC Spark Users Group March 15 2016 - Spark and Netflix Recommendations
Chris Fregly
 
Copenhagen Spark Meetup Nov 25, 2015
Copenhagen Spark Meetup Nov 25, 2015
Chris Fregly
 
Sydney Spark Meetup Dec 08, 2015
Sydney Spark Meetup Dec 08, 2015
Chris Fregly
 
Singapore Spark Meetup Dec 01 2015
Singapore Spark Meetup Dec 01 2015
Chris Fregly
 
Melbourne Spark Meetup Dec 09 2015
Melbourne Spark Meetup Dec 09 2015
Chris Fregly
 
Dallas DFW Data Science Meetup Jan 21 2016
Dallas DFW Data Science Meetup Jan 21 2016
Chris Fregly
 
Boston Spark Meetup May 24, 2016
Boston Spark Meetup May 24, 2016
Chris Fregly
 

Viewers also liked (11)

Chicago Spark Meetup 03 01 2016 - Spark and Recommendations
Chicago Spark Meetup 03 01 2016 - Spark and Recommendations
Chris Fregly
 
Atlanta MLconf Machine Learning Conference 09-23-2016
Atlanta MLconf Machine Learning Conference 09-23-2016
Chris Fregly
 
Atlanta Spark User Meetup 09 22 2016
Atlanta Spark User Meetup 09 22 2016
Chris Fregly
 
Big Data Spain - Nov 17 2016 - Madrid Continuously Deploy Spark ML and Tensor...
Big Data Spain - Nov 17 2016 - Madrid Continuously Deploy Spark ML and Tensor...
Chris Fregly
 
Tallinn Estonia Advanced Java Meetup Spark + TensorFlow = TensorFrames Oct 24...
Tallinn Estonia Advanced Java Meetup Spark + TensorFlow = TensorFrames Oct 24...
Chris Fregly
 
Deploy Spark ML and Tensorflow AI Models from Notebooks to Microservices - No...
Deploy Spark ML and Tensorflow AI Models from Notebooks to Microservices - No...
Chris Fregly
 
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Spark Summit
 
Kafka Summit SF Apr 26 2016 - Generating Real-time Recommendations with NiFi,...
Kafka Summit SF Apr 26 2016 - Generating Real-time Recommendations with NiFi,...
Chris Fregly
 
Advanced Spark and Tensorflow Meetup - London - Nov 15, 2016 - Deploy Spark M...
Advanced Spark and Tensorflow Meetup - London - Nov 15, 2016 - Deploy Spark M...
Chris Fregly
 
Advanced Spark and TensorFlow Meetup May 26, 2016
Advanced Spark and TensorFlow Meetup May 26, 2016
Chris Fregly
 
Spark on Kubernetes - Advanced Spark and Tensorflow Meetup - Jan 19 2017 - An...
Spark on Kubernetes - Advanced Spark and Tensorflow Meetup - Jan 19 2017 - An...
Chris Fregly
 
Chicago Spark Meetup 03 01 2016 - Spark and Recommendations
Chicago Spark Meetup 03 01 2016 - Spark and Recommendations
Chris Fregly
 
Atlanta MLconf Machine Learning Conference 09-23-2016
Atlanta MLconf Machine Learning Conference 09-23-2016
Chris Fregly
 
Atlanta Spark User Meetup 09 22 2016
Atlanta Spark User Meetup 09 22 2016
Chris Fregly
 
Big Data Spain - Nov 17 2016 - Madrid Continuously Deploy Spark ML and Tensor...
Big Data Spain - Nov 17 2016 - Madrid Continuously Deploy Spark ML and Tensor...
Chris Fregly
 
Tallinn Estonia Advanced Java Meetup Spark + TensorFlow = TensorFrames Oct 24...
Tallinn Estonia Advanced Java Meetup Spark + TensorFlow = TensorFrames Oct 24...
Chris Fregly
 
Deploy Spark ML and Tensorflow AI Models from Notebooks to Microservices - No...
Deploy Spark ML and Tensorflow AI Models from Notebooks to Microservices - No...
Chris Fregly
 
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Spark Summit
 
Kafka Summit SF Apr 26 2016 - Generating Real-time Recommendations with NiFi,...
Kafka Summit SF Apr 26 2016 - Generating Real-time Recommendations with NiFi,...
Chris Fregly
 
Advanced Spark and Tensorflow Meetup - London - Nov 15, 2016 - Deploy Spark M...
Advanced Spark and Tensorflow Meetup - London - Nov 15, 2016 - Deploy Spark M...
Chris Fregly
 
Advanced Spark and TensorFlow Meetup May 26, 2016
Advanced Spark and TensorFlow Meetup May 26, 2016
Chris Fregly
 
Spark on Kubernetes - Advanced Spark and Tensorflow Meetup - Jan 19 2017 - An...
Spark on Kubernetes - Advanced Spark and Tensorflow Meetup - Jan 19 2017 - An...
Chris Fregly
 
Ad

Similar to Scotland Data Science Meetup Oct 13, 2015: Spark SQL, DataFrames, Catalyst, DataSources API, Spark Cassandra Connector, ORC, Parquet, JSON, CSV, REST, ElasticSearch, DynamoDB, RedShift, Cloudant, DB2 (20)

Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Da...
Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Da...
Chris Fregly
 
Cassandra Summit Sept 2015 - Real Time Advanced Analytics with Spark and Cass...
Cassandra Summit Sept 2015 - Real Time Advanced Analytics with Spark and Cass...
Chris Fregly
 
Apache spark its place within a big data stack
Apache spark its place within a big data stack
Junjun Olympia
 
Spark sql meetup
Spark sql meetup
Michael Zhang
 
The Pushdown of Everything by Stephan Kessler and Santiago Mola
The Pushdown of Everything by Stephan Kessler and Santiago Mola
Spark Summit
 
Spark what's new what's coming
Spark what's new what's coming
Databricks
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Extending Spark for Qbeast's SQL Data Source​ with Paola Pardo and Cesare Cug...
Extending Spark for Qbeast's SQL Data Source​ with Paola Pardo and Cesare Cug...
Qbeast
 
Intro to Spark and Spark SQL
Intro to Spark and Spark SQL
jeykottalam
 
Beyond SQL: Speeding up Spark with DataFrames
Beyond SQL: Speeding up Spark with DataFrames
Databricks
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Databricks
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Anyscale
 
Introducing Apache Spark's Data Frames and Dataset APIs workshop series
Introducing Apache Spark's Data Frames and Dataset APIs workshop series
Holden Karau
 
An Insider’s Guide to Maximizing Spark SQL Performance
An Insider’s Guide to Maximizing Spark SQL Performance
Takuya UESHIN
 
Jump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with Databricks
Anyscale
 
Real-Time Spark: From Interactive Queries to Streaming
Real-Time Spark: From Interactive Queries to Streaming
Databricks
 
Introduction to Spark Datasets - Functional and relational together at last
Introduction to Spark Datasets - Functional and relational together at last
Holden Karau
 
Spark SQL In Depth www.syedacademy.com
Spark SQL In Depth www.syedacademy.com
Syed Hadoop
 
SparkSQL: A Compiler from Queries to RDDs
SparkSQL: A Compiler from Queries to RDDs
Databricks
 
The Key to Machine Learning is Prepping the Right Data with Jean Georges Perrin
The Key to Machine Learning is Prepping the Right Data with Jean Georges Perrin
Databricks
 
Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Da...
Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Da...
Chris Fregly
 
Cassandra Summit Sept 2015 - Real Time Advanced Analytics with Spark and Cass...
Cassandra Summit Sept 2015 - Real Time Advanced Analytics with Spark and Cass...
Chris Fregly
 
Apache spark its place within a big data stack
Apache spark its place within a big data stack
Junjun Olympia
 
The Pushdown of Everything by Stephan Kessler and Santiago Mola
The Pushdown of Everything by Stephan Kessler and Santiago Mola
Spark Summit
 
Spark what's new what's coming
Spark what's new what's coming
Databricks
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Extending Spark for Qbeast's SQL Data Source​ with Paola Pardo and Cesare Cug...
Extending Spark for Qbeast's SQL Data Source​ with Paola Pardo and Cesare Cug...
Qbeast
 
Intro to Spark and Spark SQL
Intro to Spark and Spark SQL
jeykottalam
 
Beyond SQL: Speeding up Spark with DataFrames
Beyond SQL: Speeding up Spark with DataFrames
Databricks
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Databricks
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Anyscale
 
Introducing Apache Spark's Data Frames and Dataset APIs workshop series
Introducing Apache Spark's Data Frames and Dataset APIs workshop series
Holden Karau
 
An Insider’s Guide to Maximizing Spark SQL Performance
An Insider’s Guide to Maximizing Spark SQL Performance
Takuya UESHIN
 
Jump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with Databricks
Anyscale
 
Real-Time Spark: From Interactive Queries to Streaming
Real-Time Spark: From Interactive Queries to Streaming
Databricks
 
Introduction to Spark Datasets - Functional and relational together at last
Introduction to Spark Datasets - Functional and relational together at last
Holden Karau
 
Spark SQL In Depth www.syedacademy.com
Spark SQL In Depth www.syedacademy.com
Syed Hadoop
 
SparkSQL: A Compiler from Queries to RDDs
SparkSQL: A Compiler from Queries to RDDs
Databricks
 
The Key to Machine Learning is Prepping the Right Data with Jean Georges Perrin
The Key to Machine Learning is Prepping the Right Data with Jean Georges Perrin
Databricks
 
Ad

More from Chris Fregly (20)

AWS reInvent 2022 reCap AI/ML and Data
AWS reInvent 2022 reCap AI/ML and Data
Chris Fregly
 
Pandas on AWS - Let me count the ways.pdf
Pandas on AWS - Let me count the ways.pdf
Chris Fregly
 
Ray AI Runtime (AIR) on AWS - Data Science On AWS Meetup
Ray AI Runtime (AIR) on AWS - Data Science On AWS Meetup
Chris Fregly
 
Smokey and the Multi-Armed Bandit Featuring BERT Reynolds Updated
Smokey and the Multi-Armed Bandit Featuring BERT Reynolds Updated
Chris Fregly
 
Amazon reInvent 2020 Recap: AI and Machine Learning
Amazon reInvent 2020 Recap: AI and Machine Learning
Chris Fregly
 
Waking the Data Scientist at 2am: Detect Model Degradation on Production Mod...
Waking the Data Scientist at 2am: Detect Model Degradation on Production Mod...
Chris Fregly
 
Quantum Computing with Amazon Braket
Quantum Computing with Amazon Braket
Chris Fregly
 
15 Tips to Scale a Large AI/ML Workshop - Both Online and In-Person
15 Tips to Scale a Large AI/ML Workshop - Both Online and In-Person
Chris Fregly
 
AWS Re:Invent 2019 Re:Cap
AWS Re:Invent 2019 Re:Cap
Chris Fregly
 
KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...
KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...
Chris Fregly
 
Swift for TensorFlow - Tanmay Bakshi - Advanced Spark and TensorFlow Meetup -...
Swift for TensorFlow - Tanmay Bakshi - Advanced Spark and TensorFlow Meetup -...
Chris Fregly
 
Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...
Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...
Chris Fregly
 
Spark SQL Catalyst Optimizer, Custom Expressions, UDFs - Advanced Spark and T...
Spark SQL Catalyst Optimizer, Custom Expressions, UDFs - Advanced Spark and T...
Chris Fregly
 
PipelineAI Continuous Machine Learning and AI - Rework Deep Learning Summit -...
PipelineAI Continuous Machine Learning and AI - Rework Deep Learning Summit -...
Chris Fregly
 
PipelineAI Real-Time Machine Learning - Global Artificial Intelligence Confer...
PipelineAI Real-Time Machine Learning - Global Artificial Intelligence Confer...
Chris Fregly
 
Hyper-Parameter Tuning Across the Entire AI Pipeline GPU Tech Conference San ...
Hyper-Parameter Tuning Across the Entire AI Pipeline GPU Tech Conference San ...
Chris Fregly
 
PipelineAI Optimizes Your Enterprise AI Pipeline from Distributed Training to...
PipelineAI Optimizes Your Enterprise AI Pipeline from Distributed Training to...
Chris Fregly
 
Advanced Spark and TensorFlow Meetup - Dec 12 2017 - Dong Meng, MapR + Kubern...
Advanced Spark and TensorFlow Meetup - Dec 12 2017 - Dong Meng, MapR + Kubern...
Chris Fregly
 
High Performance Distributed TensorFlow in Production with GPUs - NIPS 2017 -...
High Performance Distributed TensorFlow in Production with GPUs - NIPS 2017 -...
Chris Fregly
 
PipelineAI + TensorFlow AI + Spark ML + Kuberenetes + Istio + AWS SageMaker +...
PipelineAI + TensorFlow AI + Spark ML + Kuberenetes + Istio + AWS SageMaker +...
Chris Fregly
 
AWS reInvent 2022 reCap AI/ML and Data
AWS reInvent 2022 reCap AI/ML and Data
Chris Fregly
 
Pandas on AWS - Let me count the ways.pdf
Pandas on AWS - Let me count the ways.pdf
Chris Fregly
 
Ray AI Runtime (AIR) on AWS - Data Science On AWS Meetup
Ray AI Runtime (AIR) on AWS - Data Science On AWS Meetup
Chris Fregly
 
Smokey and the Multi-Armed Bandit Featuring BERT Reynolds Updated
Smokey and the Multi-Armed Bandit Featuring BERT Reynolds Updated
Chris Fregly
 
Amazon reInvent 2020 Recap: AI and Machine Learning
Amazon reInvent 2020 Recap: AI and Machine Learning
Chris Fregly
 
Waking the Data Scientist at 2am: Detect Model Degradation on Production Mod...
Waking the Data Scientist at 2am: Detect Model Degradation on Production Mod...
Chris Fregly
 
Quantum Computing with Amazon Braket
Quantum Computing with Amazon Braket
Chris Fregly
 
15 Tips to Scale a Large AI/ML Workshop - Both Online and In-Person
15 Tips to Scale a Large AI/ML Workshop - Both Online and In-Person
Chris Fregly
 
AWS Re:Invent 2019 Re:Cap
AWS Re:Invent 2019 Re:Cap
Chris Fregly
 
KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...
KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...
Chris Fregly
 
Swift for TensorFlow - Tanmay Bakshi - Advanced Spark and TensorFlow Meetup -...
Swift for TensorFlow - Tanmay Bakshi - Advanced Spark and TensorFlow Meetup -...
Chris Fregly
 
Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...
Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...
Chris Fregly
 
Spark SQL Catalyst Optimizer, Custom Expressions, UDFs - Advanced Spark and T...
Spark SQL Catalyst Optimizer, Custom Expressions, UDFs - Advanced Spark and T...
Chris Fregly
 
PipelineAI Continuous Machine Learning and AI - Rework Deep Learning Summit -...
PipelineAI Continuous Machine Learning and AI - Rework Deep Learning Summit -...
Chris Fregly
 
PipelineAI Real-Time Machine Learning - Global Artificial Intelligence Confer...
PipelineAI Real-Time Machine Learning - Global Artificial Intelligence Confer...
Chris Fregly
 
Hyper-Parameter Tuning Across the Entire AI Pipeline GPU Tech Conference San ...
Hyper-Parameter Tuning Across the Entire AI Pipeline GPU Tech Conference San ...
Chris Fregly
 
PipelineAI Optimizes Your Enterprise AI Pipeline from Distributed Training to...
PipelineAI Optimizes Your Enterprise AI Pipeline from Distributed Training to...
Chris Fregly
 
Advanced Spark and TensorFlow Meetup - Dec 12 2017 - Dong Meng, MapR + Kubern...
Advanced Spark and TensorFlow Meetup - Dec 12 2017 - Dong Meng, MapR + Kubern...
Chris Fregly
 
High Performance Distributed TensorFlow in Production with GPUs - NIPS 2017 -...
High Performance Distributed TensorFlow in Production with GPUs - NIPS 2017 -...
Chris Fregly
 
PipelineAI + TensorFlow AI + Spark ML + Kuberenetes + Istio + AWS SageMaker +...
PipelineAI + TensorFlow AI + Spark ML + Kuberenetes + Istio + AWS SageMaker +...
Chris Fregly
 

Recently uploaded (20)

Y - Recursion The Hard Way GopherCon EU 2025
Y - Recursion The Hard Way GopherCon EU 2025
Eleanor McHugh
 
Threat Modeling a Batch Job Framework - Teri Radichel - AWS re:Inforce 2025
Threat Modeling a Batch Job Framework - Teri Radichel - AWS re:Inforce 2025
2nd Sight Lab
 
From Data Preparation to Inference: How Alluxio Speeds Up AI
From Data Preparation to Inference: How Alluxio Speeds Up AI
Alluxio, Inc.
 
Top Time Tracking Solutions for Accountants
Top Time Tracking Solutions for Accountants
oliviareed320
 
Test Case Design Techniques – Practical Examples & Best Practices in Software...
Test Case Design Techniques – Practical Examples & Best Practices in Software...
Muhammad Fahad Bashir
 
From Code to Commerce, a Backend Java Developer's Galactic Journey into Ecomm...
From Code to Commerce, a Backend Java Developer's Galactic Journey into Ecomm...
Jamie Coleman
 
Decipher SEO Solutions for your startup needs.
Decipher SEO Solutions for your startup needs.
mathai2
 
Microsoft-365-Administrator-s-Guide1.pdf
Microsoft-365-Administrator-s-Guide1.pdf
mazharatknl
 
Streamlining CI/CD with FME Flow: A Practical Guide
Streamlining CI/CD with FME Flow: A Practical Guide
Safe Software
 
Canva Pro Crack Free Download 2025-FREE LATEST
Canva Pro Crack Free Download 2025-FREE LATEST
grete1122g
 
NEW-IDM Crack with Internet Download Manager 6.42 Build 27 VERSION
NEW-IDM Crack with Internet Download Manager 6.42 Build 27 VERSION
grete1122g
 
Advance Doctor Appointment Booking App With Online Payment
Advance Doctor Appointment Booking App With Online Payment
AxisTechnolabs
 
Folding Cheat Sheet # 9 - List Unfolding 𝑢𝑛𝑓𝑜𝑙𝑑 as the Computational Dual of ...
Folding Cheat Sheet # 9 - List Unfolding 𝑢𝑛𝑓𝑜𝑙𝑑 as the Computational Dual of ...
Philip Schwarz
 
Zoho Creator Solution for EI by Elsner Technologies.docx
Zoho Creator Solution for EI by Elsner Technologies.docx
Elsner Technologies Pvt. Ltd.
 
Introduction to Agile Frameworks for Product Managers.pdf
Introduction to Agile Frameworks for Product Managers.pdf
Ali Vahed
 
Best MLM Compensation Plans for Network Marketing Success in 2025
Best MLM Compensation Plans for Network Marketing Success in 2025
LETSCMS Pvt. Ltd.
 
On-Device AI: Is It Time to Go All-In, or Do We Still Need the Cloud?
On-Device AI: Is It Time to Go All-In, or Do We Still Need the Cloud?
Hassan Abid
 
CodeCleaner: Mitigating Data Contamination for LLM Benchmarking
CodeCleaner: Mitigating Data Contamination for LLM Benchmarking
arabelatso
 
Modern Platform Engineering with Choreo - The AI-Native Internal Developer Pl...
Modern Platform Engineering with Choreo - The AI-Native Internal Developer Pl...
WSO2
 
CodeCleaner: Mitigating Data Contamination for LLM Benchmarking
CodeCleaner: Mitigating Data Contamination for LLM Benchmarking
arabelatso
 
Y - Recursion The Hard Way GopherCon EU 2025
Y - Recursion The Hard Way GopherCon EU 2025
Eleanor McHugh
 
Threat Modeling a Batch Job Framework - Teri Radichel - AWS re:Inforce 2025
Threat Modeling a Batch Job Framework - Teri Radichel - AWS re:Inforce 2025
2nd Sight Lab
 
From Data Preparation to Inference: How Alluxio Speeds Up AI
From Data Preparation to Inference: How Alluxio Speeds Up AI
Alluxio, Inc.
 
Top Time Tracking Solutions for Accountants
Top Time Tracking Solutions for Accountants
oliviareed320
 
Test Case Design Techniques – Practical Examples & Best Practices in Software...
Test Case Design Techniques – Practical Examples & Best Practices in Software...
Muhammad Fahad Bashir
 
From Code to Commerce, a Backend Java Developer's Galactic Journey into Ecomm...
From Code to Commerce, a Backend Java Developer's Galactic Journey into Ecomm...
Jamie Coleman
 
Decipher SEO Solutions for your startup needs.
Decipher SEO Solutions for your startup needs.
mathai2
 
Microsoft-365-Administrator-s-Guide1.pdf
Microsoft-365-Administrator-s-Guide1.pdf
mazharatknl
 
Streamlining CI/CD with FME Flow: A Practical Guide
Streamlining CI/CD with FME Flow: A Practical Guide
Safe Software
 
Canva Pro Crack Free Download 2025-FREE LATEST
Canva Pro Crack Free Download 2025-FREE LATEST
grete1122g
 
NEW-IDM Crack with Internet Download Manager 6.42 Build 27 VERSION
NEW-IDM Crack with Internet Download Manager 6.42 Build 27 VERSION
grete1122g
 
Advance Doctor Appointment Booking App With Online Payment
Advance Doctor Appointment Booking App With Online Payment
AxisTechnolabs
 
Folding Cheat Sheet # 9 - List Unfolding 𝑢𝑛𝑓𝑜𝑙𝑑 as the Computational Dual of ...
Folding Cheat Sheet # 9 - List Unfolding 𝑢𝑛𝑓𝑜𝑙𝑑 as the Computational Dual of ...
Philip Schwarz
 
Zoho Creator Solution for EI by Elsner Technologies.docx
Zoho Creator Solution for EI by Elsner Technologies.docx
Elsner Technologies Pvt. Ltd.
 
Introduction to Agile Frameworks for Product Managers.pdf
Introduction to Agile Frameworks for Product Managers.pdf
Ali Vahed
 
Best MLM Compensation Plans for Network Marketing Success in 2025
Best MLM Compensation Plans for Network Marketing Success in 2025
LETSCMS Pvt. Ltd.
 
On-Device AI: Is It Time to Go All-In, or Do We Still Need the Cloud?
On-Device AI: Is It Time to Go All-In, or Do We Still Need the Cloud?
Hassan Abid
 
CodeCleaner: Mitigating Data Contamination for LLM Benchmarking
CodeCleaner: Mitigating Data Contamination for LLM Benchmarking
arabelatso
 
Modern Platform Engineering with Choreo - The AI-Native Internal Developer Pl...
Modern Platform Engineering with Choreo - The AI-Native Internal Developer Pl...
WSO2
 
CodeCleaner: Mitigating Data Contamination for LLM Benchmarking
CodeCleaner: Mitigating Data Contamination for LLM Benchmarking
arabelatso
 

Scotland Data Science Meetup Oct 13, 2015: Spark SQL, DataFrames, Catalyst, DataSources API, Spark Cassandra Connector, ORC, Parquet, JSON, CSV, REST, ElasticSearch, DynamoDB, RedShift, Cloudant, DB2

  • 1. IBM | spark.tc Scotland Data Science Meetup Spark SQL + DataFrames + Catalyst + Data Sources API Chris Fregly, Principal Data Solutions Engineer IBM Spark Technology Center Oct 13, 2015 Power of data. Simplicity of design. Speed of innovation.
  • 2. IBM | spark.tc Announcements Thanks to ! TechCube Incubator!!! ! Georgia Boyle! Organizer, London Spark Meetup! !
  • 3. IBM | spark.tc Who am I?! ! Streaming Data Engineer! Netflix Open Source Committer! ! Data Solutions Engineer! Apache Contributor! ! Principal Data Solutions Engineer! IBM Technology Center! Meetup Organizer! Advanced Apache Meetup! Book Author! Advanced Spark (2016)!
  • 4. IBM | spark.tc meetup.com/Advanced-Apache-Spark-Meetup/! Total Spark Experts: 1200+ in only 3 mos!! #5 most active Spark Meetup in the world!! ! Goals! Dig deep into the Spark & extended-Spark codebase! ! Study integrations such as Cassandra, ElasticSearch,! Tachyon, S3, BlinkDB, Mesos, YARN, Kafka, R, etc! ! Surface and share the patterns and idioms of these ! well-designed, distributed, big data components!
  • 5. IBM | spark.tc Recent Events Cassandra Summit 2015! Real-time Advanced Analytics w/ Spark & Cassandra! ! ! ! Strata NYC 2015! Practical Data Science w/ Spark: Recommender Systems! ! All Slides Available on ! Slideshare! http://slideshare.net/cfregly!
  • 6. IBM | spark.tc Upcoming Advanced Apache Spark Meetups! Project Tungsten Data Structs/Algos for CPU/Memory Optimization! Nov 12th, 2015! Text-based Advanced Analytics and Machine Learning! Jan 14th, 2016! ElasticSearch-Spark Connector w/ Costin Leau (Elastic.co) & Me! Feb 16th, 2016! Spark Internals Deep Dive! Mar 24th, 2016! Spark SQL Catalyst Optimizer Deep Dive ! Apr 21st, 2016!
  • 7. IBM | spark.tc Freg-a-palooza Upcoming World Tour   London Spark Meetup (Oct 12th)!   Scotland Data Science Meetup (Oct 13th)!   Dublin Spark Meetup (Oct 15th)!   Barcelona Spark Meetup (Oct 20th)!   Madrid Spark/Big Data Meetup (Oct 22nd)!   Paris Spark Meetup (Oct 26th)!   Amsterdam Spark Summit (Oct 27th – Oct 29th)!   Delft Dutch Data Science Meetup (Oct 29th) !   Brussels Spark Meetup (Oct 30th)!   Zurich Big Data Developers Meetup (Nov 2nd)! High probability! I’ll end up in jail! or married!!
  • 8. IBM | spark.tc Slides and Videos Slides! Links posted in Meetup directly! ! Videos! Most talks are live streamed and/or video recorded! Links posted in Meetup directly! ! All Slides Available on Slideshare! http://slideshare.net/cfregly!
  • 9. IBM | spark.tc Last Meetup (Spark Wins 100 TB Daytona GraySort) On-disk only, in-memory caching disabled!!sortbenchmark.org/ApacheSpark2014.pdf!
  • 10. Spark SQL + DataFrames Catalyst + Data Sources API
  • 11. IBM | spark.tc Topics of this Talk!  DataFrames!  Catalyst Optimizer and Query Plans!  Data Sources API!  Creating and Contributing Custom Data Source! !  Partitions, Pruning, Pushdowns! !  Native + Third-Party Data Source Impls! !  Spark SQL Performance Tuning!
  • 12. IBM | spark.tc DataFrames! Inspired by R and Pandas DataFrames! Cross language support! SQL, Python, Scala, Java, R! Levels performance of Python, Scala, Java, and R! Generates JVM bytecode vs serialize/pickle objects to Python! DataFrame is Container for Logical Plan! Transformations are lazy and represented as a tree! Catalyst Optimizer creates physical plan! DataFrame.rdd returns the underlying RDD if needed! Custom UDF using registerFunction() New, experimental UDAF support! Use DataFrames ! instead of RDDs!!!
  • 13. IBM | spark.tc Catalyst Optimizer! Converts logical plan to physical plan! Manipulate & optimize DataFrame transformation tree! Subquery elimination – use aliases to collapse subqueries! Constant folding – replace expression with constant! Simplify filters – remove unnecessary filters! Predicate/filter pushdowns – avoid unnecessary data load! Projection collapsing – avoid unnecessary projections! Hooks for custom rules! Rules = Scala Case Classes! val newPlan = MyFilterRule(analyzedPlan) Implements! oas.sql.catalyst.rules.Rule! Apply to any plan stage!
  • 14. IBM | spark.tc Plan Debugging! gendersCsvDF.select($"id", $"gender").filter("gender != 'F'").filter("gender != 'M'").explain(true)! Requires explain(true)! DataFrame.queryExecution.logical! DataFrame.queryExecution.analyzed! DataFrame.queryExecution.optimizedPlan! DataFrame.queryExecution.executedPlan!
  • 15. IBM | spark.tc Plan Visualization & Join/Aggregation Metrics! Effectiveness ! of Filter! Cost-based ! Optimization! is Applied! Peak Memory for! Joins and Aggs! Optimized ! CPU-cache-aware! Binary Format! Minimizes GC &! Improves Join Perf! (Project Tungsten)! New in Spark 1.5!!
  • 16. IBM | spark.tc Data Sources API! Relations (o.a.s.sql.sources.interfaces.scala)! BaseRelation (abstract class): Provides schema of data! TableScan (impl): Read all data from source, construct rows ! PrunedFilteredScan (impl): Read with column pruning & predicate pushdowns InsertableRelation (impl): Insert or overwrite data based on SaveMode enum! RelationProvider (trait/interface): Handles user options, creates BaseRelation! Execution (o.a.s.sql.execution.commands.scala)! RunnableCommand (trait/interface)! ExplainCommand(impl: case class)! CacheTableCommand(impl: case class)! Filters (o.a.s.sql.sources.filters.scala)! Filter (abstract class for all filter pushdowns for this data source)! EqualTo (impl)! GreaterThan (impl)! StringStartsWith (impl)!
  • 17. IBM | spark.tc Creating a Custom Data Source! Study Existing Native and Third-Party Data Source Impls! ! Native: JDBC (o.a.s.sql.execution.datasources.jdbc)! class JDBCRelation extends BaseRelation with PrunedFilteredScan with InsertableRelation ! Third-Party: Cassandra (o.a.s.sql.cassandra)! class CassandraSourceRelation extends BaseRelation with PrunedFilteredScan with InsertableRelation! !
  • 18. IBM | spark.tc Contributing a Custom Data Source! spark-packages.org! Managed by! Contains links to externally-managed github projects! Ratings and comments! Spark version requirements of each package! Examples! https://github.com/databricks/spark-csv! https://github.com/databricks/spark-avro! https://github.com/databricks/spark-redshift!
  • 20. IBM | spark.tc Demo Dataset (from previous Spark After Dark talks)! RATINGS ! ========! UserID,ProfileID,Rating ! (1-10)! GENDERS! ========! UserID,Gender ! (M,F,U)! <-- Totally -->! Anonymous !
  • 21. IBM | spark.tc Partitions! Partition based on data usage patterns! /genders.parquet/gender=M/… /gender=F/… <-- Use case: access users by gender /gender=U/… Partition Discovery! On read, infer partitions from organization of data (ie. gender=F)! Dynamic Partitions! Upon insert, dynamically create partitions! Specify field to use for each partition (ie. gender)! SQL: INSERT TABLE genders PARTITION (gender) SELECT … DF: gendersDF.write.format(”parquet").partitionBy(”gender”).save(…)
  • 22. IBM | spark.tc Pruning! Partition Pruning! Filter out entire partitions of rows on partitioned data SELECT id, gender FROM genders where gender = ‘U’ Column Pruning! Filter out entire columns for all rows if not required! Extremely useful for columnar storage formats! Parquet, ORC! SELECT id, gender FROM genders !
  • 23. IBM | spark.tc Pushdowns! Predicate (aka Filter) Pushdowns! Predicate returns {true, false} for a given function/condition! Filters rows as deep into the data source as possible! Data Source must implement PrunedFilteredScan!
  • 24. Native Spark SQL Data Sources
  • 25. IBM | spark.tc Spark SQL Native Data Sources - Source Code!
  • 26. IBM | spark.tc JSON Data Source! DataFrame! val ratingsDF = sqlContext.read.format("json") .load("file:/root/pipeline/datasets/dating/ratings.json.bz2") -- or --! val ratingsDF = sqlContext.read.json ("file:/root/pipeline/datasets/dating/ratings.json.bz2") SQL Code! CREATE TABLE genders USING json OPTIONS (path "file:/root/pipeline/datasets/dating/genders.json.bz2") Convenience Method
  • 27. IBM | spark.tc JDBC Data Source! Add Driver to Spark JVM System Classpath! $ export SPARK_CLASSPATH=<jdbc-driver.jar> DataFrame! val jdbcConfig = Map("driver" -> "org.postgresql.Driver", "url" -> "jdbc:postgresql:hostname:port/database", "dbtable" -> ”schema.tablename") df.read.format("jdbc").options(jdbcConfig).load() SQL! CREATE TABLE genders USING jdbc OPTIONS (url, dbtable, driver, …)
  • 28. IBM | spark.tc Parquet Data Source! Configuration! spark.sql.parquet.filterPushdown=true! spark.sql.parquet.mergeSchema=true spark.sql.parquet.cacheMetadata=true! spark.sql.parquet.compression.codec=[uncompressed,snappy,gzip,lzo] DataFrames! val gendersDF = sqlContext.read.format("parquet") .load("file:/root/pipeline/datasets/dating/genders.parquet")! gendersDF.write.format("parquet").partitionBy("gender") .save("file:/root/pipeline/datasets/dating/genders.parquet") SQL! CREATE TABLE genders USING parquet OPTIONS (path "file:/root/pipeline/datasets/dating/genders.parquet")
  • 29. IBM | spark.tc ORC Data Source! Configuration! spark.sql.orc.filterPushdown=true DataFrames! val gendersDF = sqlContext.read.format("orc") .load("file:/root/pipeline/datasets/dating/genders")! gendersDF.write.format("orc").partitionBy("gender") .save("file:/root/pipeline/datasets/dating/genders") SQL! CREATE TABLE genders USING orc OPTIONS (path "file:/root/pipeline/datasets/dating/genders")
  • 31. IBM | spark.tc CSV Data Source (Databricks)! Github! https://github.com/databricks/spark-csv! ! Maven! com.databricks:spark-csv_2.10:1.2.0! ! Code! val gendersCsvDF = sqlContext.read .format("com.databricks.spark.csv") .load("file:/root/pipeline/datasets/dating/gender.csv.bz2") .toDF("id", "gender") toDF() defines column names!
  • 32. IBM | spark.tc Avro Data Source (Databricks)! Github! https://github.com/databricks/spark-avro! ! Maven! com.databricks:spark-avro_2.10:2.0.1! ! Code! val df = sqlContext.read .format("com.databricks.spark.avro") .load("file:/root/pipeline/datasets/dating/gender.avro") !
  • 33. IBM | spark.tc ElasticSearch Data Source (Elastic.co)! Github! https://github.com/elastic/elasticsearch-hadoop! Maven! org.elasticsearch:elasticsearch-spark_2.10:2.1.0! Code! val esConfig = Map("pushdown" -> "true", "es.nodes" -> "<hostname>", "es.port" -> "<port>") df.write.format("org.elasticsearch.spark.sql”).mode(SaveMode.Overwrite) .options(esConfig).save("<index>/<document>")
  • 34. IBM | spark.tc Cassandra Data Source (DataStax)! Github! https://github.com/datastax/spark-cassandra-connector! Maven! com.datastax.spark:spark-cassandra-connector_2.10:1.5.0-M1 Code! ratingsDF.write .format("org.apache.spark.sql.cassandra") .mode(SaveMode.Append) .options(Map("keyspace"->"<keyspace>", "table"->"<table>")).save(…)
  • 35. IBM | spark.tc Cassandra Pushdown Rules! Determines which filter predicates can be pushed down to Cassandra.! * 1. Only push down no-partition key column predicates with =, >, <, >=, <= predicate! * 2. Only push down primary key column predicates with = or IN predicate.! * 3. If there are regular columns in the pushdown predicates, they should have! * at least one EQ expression on an indexed column and no IN predicates.! * 4. All partition column predicates must be included in the predicates to be pushed down,! * only the last part of the partition key can be an IN predicate. For each partition column,! * only one predicate is allowed.! * 5. For cluster column predicates, only last predicate can be non-EQ predicate! * including IN predicate, and preceding column predicates must be EQ predicates.! * If there is only one cluster column predicate, the predicates could be any non-IN predicate.! * 6. There is no pushdown predicates if there is any OR condition or NOT IN condition.! * 7. We're not allowed to push down multiple predicates for the same column if any of them! * is equality or IN predicate.! spark-cassandra-connector/…/o.a.s.sql.cassandra.PredicatePushDown.scala!
  • 36. IBM | spark.tc Special Thanks to DataStax!!!! Russel Spitzer! @RussSpitzer! (He created the following few slides)! (These guys built a lot of the connector.)!
  • 39. IBM | spark.tc Spark-Cassandra Node-specific CQL Queries! http://www.slideshare.net/CesareCugnasco/indexing-3dimensional-trajectories-apache-spark-and-cassandra-integration!
  • 40. IBM | spark.tc Spark-Cassandra Configuration:input.page.row.size
  • 41. IBM | spark.tc Spark-Cassandra Configuration: grouping.key!
  • 42. IBM | spark.tc Spark-Cassandra Configuration: size.rows/bytes!
  • 43. IBM | spark.tc Spark-Cassandra Configuration: batch.buffer.size!
  • 44. IBM | spark.tc Spark-Cassandra Configuration: concurrent.writes!
  • 45. IBM | spark.tc Spark-Cassandra Configuration: throughput_mb/s!
  • 46. IBM | spark.tc Spark-Cassandra Optimizatins and Next Steps! By-pass CQL front door! Bulk read/write directly to SSTables! Rumored to be in existence! DataStax Enterprise only?! Closed Source Alert!!
  • 47. IBM | spark.tc Redshift Data Source (Databricks)! Github! https://github.com/databricks/spark-redshift! Maven! com.databricks:spark-redshift:0.5.0! Code! val df: DataFrame = sqlContext.read .format("com.databricks.spark.redshift") .option("url", "jdbc:redshift://<hostname>:<port>/<database>…") .option("query", "select x, count(*) my_table group by x") .option("tempdir", "s3n://tmpdir") .load(...) Copies to S3 for ! fast, parallel reads vs ! single Redshift Master bottleneck!
  • 48. IBM | spark.tc Cloudant Data Source (IBM)! Github! http://spark-packages.org/package/cloudant/spark-cloudant! Maven! com.datastax.spark:spark-cassandra-connector_2.10:1.5.0-M1 Code! ratingsDF.write.format("com.cloudant.spark") .mode(SaveMode.Append) .options(Map("cloudant.host"->"<account>.cloudant.com", "cloudant.username"->"<username>", "cloudant.password"->"<password>")) .save("<filename>")
  • 49. IBM | spark.tc DB2 and BigSQL Data Sources (IBM)! Coming Soon!! ! ! ! https://github.com/SparkTC/spark-db2! https://github.com/SparkTC/spark-bigsql! !
  • 50. IBM | spark.tc REST Data Source (Databricks)! Coming Soon!! https://github.com/databricks/spark-rest?! Michael Armbrust! Spark SQL Lead @ Databricks!
  • 51. IBM | spark.tc Simple Data Source (Me and You Guys)! Coming Right Now!!! Me!
  • 52. IBM | spark.tc SparkSQL Performance Tuning (oas.sql.SQLConf)! spark.sql.inMemoryColumnarStorage.compressed=true! Automatically selects column codec based on data! spark.sql.inMemoryColumnarStorage.batchSize! Increase as much as possible without OOM – improves compression and GC! spark.sql.inMemoryPartitionPruning=true! Enable partition pruning for in-memory partitions! spark.sql.tungsten.enabled=true! Code Gen for CPU and Memory Optimizations (Tungsten aka Unsafe Mode)! spark.sql.shuffle.partitions! Increase from default 200 for large joins and aggregations! spark.sql.autoBroadcastJoinThreshold! Increase to tune this cost-based, physical plan optimization! spark.sql.hive.metastorePartitionPruning! Predicate pushdown into the metastore to prune partitions early! spark.sql.planner.sortMergeJoin! Prefer sort-merge (vs. hash join) for large joins ! spark.sql.sources.partitionDiscovery.enabled ! & spark.sql.sources.parallelPartitionDiscovery.threshold!
  • 53. IBM | spark.tc Related Links! https://github.com/datastax/spark-cassandra-connector! http://blog.madhukaraphatak.com/anatomy-of-spark-dataframe-api/! https://github.com/phatak-dev/anatomy_of_spark_dataframe_api! https://databricks.com/blog/! https://www.youtube.com/watch?v=uxuLRiNoDio! http://www.slideshare.net/RussellSpitzer!
  • 54. IBM | spark.tc Freg-a-palooza Upcoming World Tour   London Spark Meetup (Oct 12th)!   Scotland Data Science Meetup (Oct 13th)!   Dublin Spark Meetup (Oct 15th)!   Barcelona Spark Meetup (Oct 20th)!   Madrid Spark/Big Data Meetup (Oct 22nd)!   Paris Spark Meetup (Oct 26th)!   Amsterdam Spark Summit (Oct 27th – Oct 29th)!   Delft Dutch Data Science Meetup (Oct 29th) !   Brussels Spark Meetup (Oct 30th)!   Zurich Big Data Developers Meetup (Nov 2nd)! High probability! I’ll end up in jail! or married!!
  • 55. http://spark.tc/datapalooza IBM Spark Tech Center is Hiring! " JOnly Fun, Collaborative People!! J IBM | spark.tc Sign up for our newsletter at Thank You! Power of data. Simplicity of design. Speed of innovation. Coming to Your City!!!!
  • 56. Power of data. Simplicity of design. Speed of innovation. IBM Spark