This presentation about Spark SQL will help you understand what is Spark SQL, Spark SQL features, architecture, data frame API, data source API, catalyst optimizer, running SQL queries and a demo on Spark SQL. Spark SQL is an Apache Spark's module for working with structured and semi-structured data. It is originated to overcome the limitations of Apache Hive. Now, let us get started and understand Spark SQL in detail. Below topics are explained in this Spark SQL presentation: 1. What is Spark SQL? 2. Spark SQL features 3. Spark SQL architecture 4. Spark SQL - Dataframe API 5. Spark SQL - Data source API 6. Spark SQL - Catalyst optimizer 7. Running SQL queries 8. Spark SQL demo This Apache Spark and Scala certification training is designed to advance your expertise working with the Big Data Hadoop Ecosystem. You will master essential skills of the Apache Spark open source framework and the Scala programming language, including Spark Streaming, Spark SQL, machine learning programming, GraphX programming, and Shell Scripting Spark. This Scala Certification course will give you vital skillsets and a competitive advantage for an exciting career as a Hadoop Developer. What is this Big Data Hadoop training course about? The Big Data Hadoop and Spark developer course have been designed to impart an in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab. What are the course objectives? Simplilearn’s Apache Spark and Scala certification training are designed to: 1. Advance your expertise in the Big Data Hadoop Ecosystem 2. Help you master essential Apache and Spark skills, such as Spark Streaming, Spark SQL, machine learning programming, GraphX programming and Shell Scripting Spark 3. Help you land a Hadoop developer job requiring Apache Spark expertise by giving you a real-life industry project coupled with 30 demos What skills will you learn? By completing this Apache Spark and Scala course you will be able to: 1. Understand the limitations of MapReduce and the role of Spark in overcoming these limitations 2. Understand the fundamentals of the Scala programming language and its features 3. Explain and master the process of installing Spark as a standalone cluster 4. Develop expertise in using Resilient Distributed Datasets (RDD) for creating applications in Spark 5. Master Structured Query Language (SQL) using SparkSQL 6. Gain a thorough understanding of Spark streaming features 7. Master and describe the features of Spark ML programming and GraphX programming Learn more at https://www.simplilearn.com/big-data-and-analytics/apache-spark-scala-certification-training