This document summarizes research on structured regression for efficient object detection. It proposes framing object localization as a structured output regression problem rather than a classification problem. This involves learning a function that maps images directly to object bounding boxes. It describes using a structured support vector machine with joint image/box kernels and box overlap loss to learn this mapping from training data. The document also outlines techniques for efficiently solving the resulting argmax problem using branch-and-bound optimization and discusses extensions to other tasks like image segmentation.