This document summarizes support vector machines (SVMs), a machine learning technique for classification and regression. SVMs find the optimal separating hyperplane that maximizes the margin between positive and negative examples in the training data. This is achieved by solving a convex optimization problem that minimizes a quadratic function under linear constraints. SVMs can perform non-linear classification by implicitly mapping inputs into a higher-dimensional feature space using kernel functions. They have applications in areas like text categorization due to their ability to handle high-dimensional sparse data.