Tensor Spectral Clustering is an algorithm that generalizes graph partitioning and spectral clustering methods to account for higher-order network structures. It defines a new objective function called motif conductance that measures how partitions cut motifs like triangles in addition to edges. The algorithm represents a tensor of higher-order random walk transitions as a matrix and computes eigenvectors to find a partition that minimizes the number of motifs cut, allowing networks to be clustered based on higher-order connectivity patterns. Experiments on synthetic and real networks show it can discover meaningful partitions by accounting for motifs that capture important structural relationships.