SlideShare a Scribd company logo
Triggering Patterns of Topology Changes
in Dynamic Graphs
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet
The 2014 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM)
Beijing, China, August 17-20, 2014
LABORATOIRE D’INFORMATIQUE EN IMAGE ET SYSTÈMES D’INFORMATION
UMR 5205 CNRS / INSA de Lyon / Université Claude Bernard Lyon 1
Context & motivation
Networks structurally change over time:
How to describe these dynamics?
a: 2
b: 0
c: 6
deg: 2
u5
u3
u4
u2
a: 7
b: 4
c: 5
deg: 1
a: 2
b: 1
c: 6
deg: 2
u1
u5
u3
u4
u2
a: 7
b: 5
c: 2
deg: 1
a: 5
b: 4
c: 5
deg: 2
u1
u5
u3
u4
u2
a: 8
b: 5
c: 1
deg: 4
a: 5
b: 5
c: 5
deg: 2
u1
u5
u3
u4
u2
a: 9
b: 6
c: 1
deg: 4
a: 6
b: 5
c: 2
deg: 2
u1
u5
u3
u4
u2
a: 9
b: 6
c: 0
deg: 4
a: 7
b: 5
c: 1
deg: 4
u1
u5
u3
u4
u2
1
a+ b+ c- deg+
a+ b+ c-
deg+
u1
a: 4
b: 1
c: 5
deg: 1
2 3 4 5 6
Intuition
Consider attributed graphs evolving through time
The variation of some attribute values (entities attributes) of a
node can lead in several cases to a structural change
(topological attributes)
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 2
Context & motivation
a: 2
b: 0
c: 6
deg: 2
u5
u3
u4
u2
a: 7
b: 4
c: 5
deg: 1
a: 2
b: 1
c: 6
deg: 2
u1
u5
u3
u4
u2
a: 7
b: 5
c: 2
deg: 1
a: 5
b: 4
c: 5
deg: 2
u1
u5
u3
u4
u2
a: 8
b: 5
c: 1
deg: 4
a: 5
b: 5
c: 5
deg: 2
u1
u5
u3
u4
u2
a: 9
b: 6
c: 1
deg: 4
a: 6
b: 5
c: 2
deg: 2
u1
u5
u3
u4
u2
a: 9
b: 6
c: 0
deg: 4
a: 7
b: 5
c: 1
deg: 4
u1
u5
u3
u4
u2
1
a+ b+ c- deg+
a+ b+ c-
deg+
u1
a: 4
b: 1
c: 5
deg: 1
2 3 4 5 6
A new pattern domain
a+ Updating his status more often
b+ giving positive opinions about others
c− receiving less negative opinions from the others
deg+ is often followed by an increase of user’s popularity
{a+,b+},{c+},{deg+} is a triggering pattern
A problem rooted in pattern mining and graph analysis
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 3
Triggering patterns
Outline
1 Triggering patterns
2 Method and algorithm
3 Experiments
4 Conclusion
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 4
Triggering patterns
Dynamic attributed graphs
Dynamic attributed graph
Let G = {G1,...,Gt} be a sequence of t static attributed graphs
Gi = (V,Ei,F) with T = {1,...,t} the set of timestamps
V the set of vertices
Ei the set of edges that connect vertices of V at time i ∈ T
(Ei ⊆ V ×V)
F the set of numerical attributes that map each vertex-time
pair to a real value: ∀f ∈ F, f : V ×T → R.
a: 2
b: 0
c: 6
deg: 2
u5
u3
u4
u2
a: 7
b: 4
c: 5
deg: 1
a: 2
b: 1
c: 6
deg: 2
u1
u5
u3
u4
u2
a: 7
b: 5
c: 2
deg: 1
a: 5
b: 4
c: 5
deg: 2
u1
u5
u3
u4
u2
a: 8
b: 5
c: 1
deg: 4
a: 5
b: 5
c: 5
deg: 2
u1
u5
u3
u4
u2
a: 9
b: 6
c: 1
deg: 4
a: 6
b: 5
c: 2
deg: 2
u1
u5
u3
u4
u2
a: 9
b: 6
c: 0
deg: 4
a: 7
b: 5
c: 1
deg: 4
u1
u5
u3
u4
u2
1
a+ b+ c- deg+
a+ b+ c-
deg+
u1
a: 4
b: 1
c: 5
deg: 1
2 3 4 5 6
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 5
Triggering patterns
Characterizing vertices behaviors
Vertex descriptive sequence
A discretization function gives a variation symbol to a
vertex/attribute/time triple, e.g.
discr(v,d,i) =



+ if d(v,i)−d(v,i−1) ≥ 2 and i > 1
− if d(v,i)−d(v,i−1) ≤ −2 and i > 1
/0 otherwise
The set of all variations for a vertex v at time i is an itemset
vars(v,i) = {ddiscr(v,d,i),∀d ∈ D}.
A vertex v is described by a sequence
δ(v) = vars(v,1),...,vars(v,t) .
∆ = {δ(v) | v ∈ V} is the set of all sequences.
Example
δ(u1) = {a+,b+},{c−},{deg+}
∆ = {δ(u1),δ(u2),δ(u3),δ(u4),δ(u5)}
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 6
Triggering patterns
Pattern domain
Triggering pattern
A triggering pattern is a sequence P = L,R
L is a sequence of sets of descriptor variations:
L = X1,...,Xk with ∀j ≤ k, Xj ⊆ (D×S)
R a single topological variation, R ∈ (M ×S)
Its support is SUPP(P,∆) = {v ∈ V | P δ(v)}
where p q means that p is a super-sequence of q
Example
L = {a+,b+},{c−}
R = {deg+}
SUPP( L,R ,∆) = {u1,u3}
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 7
Triggering patterns
Assessing the strength of a pattern?
Triggering pattern growth rate
Let P = L,R , we denote by ∆R ⊆ ∆ the set of vertex descriptive
sequences that contain R. The growth rate of P is given by:
GR(P,∆R
) =
|SUPP(L,∆R)|
|∆R|
×
|∆∆R|
|SUPP(L,∆∆R)|
G. Dong and J. Li.
Efficient mining of emerging patterns: Discovering trends
and differences.
In KDD, pages 43–52, 1999.
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 8
Triggering patterns
Assessing the diffusion potential of a pattern?
Coverage of a triggering pattern
Gaggr = (V,Eaggr) an aggregated graph of the dynamic graph
The coverage of a pattern P is defined by:
COV(P,∆,Gaggr) = SUPP(P,∆)∪{v ∈ V | ∃w ∈ SUPP(P,∆)s.t.(w,v) ∈ Eaggr}
It naturally follows that SUPP(P,∆) ⊆ COV(P,∆).
Example
ρ(P,∆) =
COV(P,∆,Gaggr)
SUPP(P,∆)
∈ [1,|V|]
To distinguish the patterns supported by a group of isolated
vertices (values close to 1) to the ones supported by very
connected vertices (much higher values than 1).
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 9
Triggering patterns
The problem
The triggering pattern mining problem
Given
a dynamic attributed graph G
a minimum growth rate threshold minGR
a minimum coverage threshold minCov
the problem is to find all triggering patterns P = L,R with
|COV(P,∆)| ≥ minCov
GR(P,∆R) ≥ minGR.
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 10
Method and algorithm
Outline
1 Triggering patterns
2 Method and algorithm
3 Experiments
4 Conclusion
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 11
Method and algorithm
Methodology
Dynamic attributed graph
↓ Choice of an appropriate discretization procedure
↓ Transformation
Database of vertex descriptive sequences
↓ Mining closed sequential patterns w.r.t. coverage
↓ Build triggering pattern candidates
Triggering pattern candidates
↓ Growth rate computation
Triggering patterns
Interpretation & vizualisation
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 12
Method and algorithm
TRIGAT
Algorithm TRIGAT
Require: G = {(V,Ei,F)}, minGr, minCov, Gaggr
Ensure: P the set of closed triggering patterns
∆ ← {δ(v)|v ∈ V}
I ← all covering 1-item sequences
Filter ∆ with only covering 1-item sequences
for all s ∈ I do
C ←TRIGAT_enum(s,∆|s,Gaggr,minCov)
end for
Eliminate non-closed sequences from C
C ← prefix closed patterns s,Xk ∈ C, s.t.Xk ∈ (M ×S)
for all P = s,Xk ∈ C do
Add P to P if GR( s,Xk ,∆Xk
) ≥ minGr
end for
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 13
Method and algorithm
TRIGAT
Procedure TRIGAT_ENUM
Require: s = S1,...,S ,∆|s,Gaggr, minCov
Ensure: C the set of covering sequences of prefix s
1: if not closed_based_prunnable(s) then
2: insert s in C
3: end if
4: Scan ∆|s, find every covering item α ∈ (D×S) such that s can be
extended to S1,...,S −1,{S ∪α} or S1,...,S ,α
5: for all valid α do
6: s ← S1,...,S −1,{S ∪α}
7: TRIGAT_enum(s,D|s,Gaggr,minCov)
8: s ← S1,...,S ,α
9: TRIGAT_enum(s,D|s,Gaggr,minCov)
10: end for
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 14
Experiments
Outline
1 Triggering patterns
2 Method and algorithm
3 Experiments
4 Conclusion
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 15
Experiments
Quantitative experiments
Running times
Distribution of support, GR, ...
Scalability
First qualitative assessments
Synchronous/asynchronous events
Dense/sparse yet covering
|V| |F| |T| |D| S I degsum densitysum
DBLP 2723 45 9 360 34.4 6.6 14.7 0.005
RITA1 220 8 30 30 16.3 5.1 15.7 0.07
RITA2 234 8 24 39 4.5 1.8 17 0.07
RITA3 280 6 8 87 28.3 6.5 15.9 0.05
del.icio.us 1867 121 5 400 31 1.6 11 0.003
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 16
Experiments
Quantitative results
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 17
Experiments
The DBLP dataset
Detecting asynchronous events
Scientific careers of researchers with different experiences
Rank Pattern Support Coverage Growth rate ρ
1 {closeness−
1 },{IEEETransKnowlDtEn+},{numCliques+
1 } → {numCliques−
1 } 15 578 87.4 38.5
2 {clustering++
1 ,degree++
1 },{Journal++,eigenvector++
2 } → {eigenvector++
3 } 31 546 71.6 17.6
3 {ICDE+,numCliques+
1 } → {numCliques−
1 } 22 606 64.1 27
4 {eigenvector++
1 ,degree++
1 },{VLDB++,degree++
2 } → {degree++
3 } 29 580 63.8 20
5 {eigenvector++
1 ,clustering++
1 },{Journal++,eigenvector++
2 } → {eigenvector++
3 } 36 619 59.3 17.19
6 {ACMTransDBSys+},{numCliques+
1 } → {numCliques−
1 } 20 547 58.3 27.35
7 {eigenvector++
1 },{Journal++,betweennes++
3 } → {betweennes++
4 } 20 587 58.4 29.35
8 {eigenvector++
1 },{VLDB++,degree++
2 } → {degree++
3 } 30 623 56.47 20.7
9 {SIGMOD−},{numCliques+
1 } → {numCliques−
1 } 32 754 53.3 23.56
10 {closeness−
1 },{SIGMOD−},{numCliques+
1 } → {numCliques−
1 } 18 552 52.4 30.6
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 18
Experiments
The R.I.T.A. dataset
Synchronous events
RITA1: daily in September 2001
{#Canceled+}{Degree−,Closeness−,NumCliques−,
Pagerank−,Betweennes−} → Degree+ with sup = 5, cov = 144
AIRPORTS THAT ABSORB THE TRAFFIC TWO DAYS AFTER
RITA2: monthly in (sept. 2000 ; Sept. 2002 )
{#Canceled+}{#Canceled−},{numCliques−,Betweeness+}
→ numCliques+ with sup = 8, cov = 61
A "BACK TO NORMAL" AROUND MARCH 2002
RITA3: Aug./Sept. 2005 (Katrina Hurricane)
THE MOST DISCRIMINANT APPEARS DURING KATRINA
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 19
Experiments
The del.ico.us dataset
What are the most triggering attributes?
how-to, tutorial, web design, visualization
“teaching triggering”
video, community
“social triggering”
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 20
Conclusion
Outline
1 Triggering patterns
2 Method and algorithm
3 Experiments
4 Conclusion
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 21
Conclusion
Conclusion
Triggering patterns in dynamic graphs
Sequences of variation of vertex attribute values that may
trigger topological changes
Closed sequential pattern mining
Growth rate: gives the discrimination power of a sequence
to explain a topological change
Coverage: tells us about the diffusion potential
Main challenge
Which aggregated graph to choose when computing the
coverage?
Patterns image can have (a)-synchronous sequences
2|T| aggregated graphs are possible!!
M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 22
Triggering patterns of topology changes in dynamic attributed graphs

More Related Content

PDF
Number theoretic-rsa-chailos-new
PDF
Graph kernels
PDF
Graph Edit Distance: Basics & Trends
PDF
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
PDF
Graph Kernels for Chemical Informatics
PDF
On Convolution of Graph Signals and Deep Learning on Graph Domains
PDF
New Classes of Odd Graceful Graphs
PDF
A lattice-based consensus clustering
Number theoretic-rsa-chailos-new
Graph kernels
Graph Edit Distance: Basics & Trends
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
Graph Kernels for Chemical Informatics
On Convolution of Graph Signals and Deep Learning on Graph Domains
New Classes of Odd Graceful Graphs
A lattice-based consensus clustering

What's hot (20)

PDF
Bidimensionality
PDF
Comparing estimation algorithms for block clustering models
PDF
Divergence center-based clustering and their applications
PPT
PDF
Computational Information Geometry: A quick review (ICMS)
PDF
04 maths
PDF
Pattern-based classification of demographic sequences
PDF
Overlap Layout Consensus assembly
PDF
Patch Matching with Polynomial Exponential Families and Projective Divergences
PDF
Iterative Compression
PDF
Divergence clustering
PDF
Linear Classifiers
PDF
Clustering in Hilbert simplex geometry
PDF
Treewidth and Applications
PDF
Talk iccf 19_ben_hammouda
PPTX
Aaex5 group2(中英夾雜)
PDF
Low-rank tensor approximation (Introduction)
PDF
report
PDF
1452 86301000013 m
PDF
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Bidimensionality
Comparing estimation algorithms for block clustering models
Divergence center-based clustering and their applications
Computational Information Geometry: A quick review (ICMS)
04 maths
Pattern-based classification of demographic sequences
Overlap Layout Consensus assembly
Patch Matching with Polynomial Exponential Families and Projective Divergences
Iterative Compression
Divergence clustering
Linear Classifiers
Clustering in Hilbert simplex geometry
Treewidth and Applications
Talk iccf 19_ben_hammouda
Aaex5 group2(中英夾雜)
Low-rank tensor approximation (Introduction)
report
1452 86301000013 m
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Ad

Viewers also liked (15)

ODP
PPTX
Mobile Websites for Dummies
PDF
On the Mining of Numerical Data with Formal Concept Analysis
PDF
Watch me playing, I am a professional. A first study on video game live strea...
PDF
Characterizing and mining numerical patterns, an FCA point of view
PDF
Discovering openings and their balance in competitive RTS gaming. An approach...
PPTX
Optimizing your presence online
PDF
Extracting biclusters of similar values with Triadic Concept Analysis
PPTX
Curriculum
PPTX
Your Library on the Go: Catching Up with Your Mobile Patrons
PDF
Interval Pattern Structures: An introdution
PPTX
Trabajo de diapositiva perez
PDF
Foc sos lic_suspforminstr
PPTX
Business Transformation - Our Journey by Veronique Ingram, ITSA
DOCX
The little prince
Mobile Websites for Dummies
On the Mining of Numerical Data with Formal Concept Analysis
Watch me playing, I am a professional. A first study on video game live strea...
Characterizing and mining numerical patterns, an FCA point of view
Discovering openings and their balance in competitive RTS gaming. An approach...
Optimizing your presence online
Extracting biclusters of similar values with Triadic Concept Analysis
Curriculum
Your Library on the Go: Catching Up with Your Mobile Patrons
Interval Pattern Structures: An introdution
Trabajo de diapositiva perez
Foc sos lic_suspforminstr
Business Transformation - Our Journey by Veronique Ingram, ITSA
The little prince
Ad

Similar to Triggering patterns of topology changes in dynamic attributed graphs (20)

PDF
DyGraph: A Dynamic Graph Generator and Benchmark Suite : NOTES
PDF
Introduction to Treewidth
PDF
Prestation_ClydeShen
PDF
Graph Machine Learning - Past, Present, and Future -
PPTX
20151130
PDF
Real-Time Data Mining for Event Streams
PDF
Dynamic Network Representation Based On Latent Factorization Of Tensors Hao Wu
DOC
Study on Impact of Media on Education Using Fuzzy Relational Maps
PDF
Delta-Screening: A Fast and Efficient Technique to Update Communities in Dyna...
PDF
Ay4201347349
PPTX
Temporal graph
PPTX
Visualization of Anomalies in Dynamic Networks with NodeXL
PPTX
Matrix representation of graph
PDF
Fast Incremental Community Detection on Dynamic Graphs : NOTES
PPTX
A survey on graph kernels
PDF
Scalable and Efficient Algorithms for Analysis of Massive, Streaming Graphs
PPT
graph_mining_seminar_2009.ppt
PPTX
Dynamic Data Community Discovery
PDF
Approximation Data Structures for Streaming Applications
PDF
Unit-10 Graphs .pdf
DyGraph: A Dynamic Graph Generator and Benchmark Suite : NOTES
Introduction to Treewidth
Prestation_ClydeShen
Graph Machine Learning - Past, Present, and Future -
20151130
Real-Time Data Mining for Event Streams
Dynamic Network Representation Based On Latent Factorization Of Tensors Hao Wu
Study on Impact of Media on Education Using Fuzzy Relational Maps
Delta-Screening: A Fast and Efficient Technique to Update Communities in Dyna...
Ay4201347349
Temporal graph
Visualization of Anomalies in Dynamic Networks with NodeXL
Matrix representation of graph
Fast Incremental Community Detection on Dynamic Graphs : NOTES
A survey on graph kernels
Scalable and Efficient Algorithms for Analysis of Massive, Streaming Graphs
graph_mining_seminar_2009.ppt
Dynamic Data Community Discovery
Approximation Data Structures for Streaming Applications
Unit-10 Graphs .pdf

Recently uploaded (20)

PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
Introduction to Cardiovascular system_structure and functions-1
PDF
Sciences of Europe No 170 (2025)
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PPTX
neck nodes and dissection types and lymph nodes levels
PDF
An interstellar mission to test astrophysical black holes
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PPTX
BIOMOLECULES PPT........................
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PPTX
Microbiology with diagram medical studies .pptx
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PDF
Biophysics 2.pdffffffffffffffffffffffffff
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
2Systematics of Living Organisms t-.pptx
Introduction to Cardiovascular system_structure and functions-1
Sciences of Europe No 170 (2025)
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
7. General Toxicologyfor clinical phrmacy.pptx
Introduction to Fisheries Biotechnology_Lesson 1.pptx
Classification Systems_TAXONOMY_SCIENCE8.pptx
neck nodes and dissection types and lymph nodes levels
An interstellar mission to test astrophysical black holes
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
BIOMOLECULES PPT........................
Taita Taveta Laboratory Technician Workshop Presentation.pptx
POSITIONING IN OPERATION THEATRE ROOM.ppt
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
AlphaEarth Foundations and the Satellite Embedding dataset
Microbiology with diagram medical studies .pptx
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Biophysics 2.pdffffffffffffffffffffffffff

Triggering patterns of topology changes in dynamic attributed graphs

  • 1. Triggering Patterns of Topology Changes in Dynamic Graphs M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet The 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) Beijing, China, August 17-20, 2014 LABORATOIRE D’INFORMATIQUE EN IMAGE ET SYSTÈMES D’INFORMATION UMR 5205 CNRS / INSA de Lyon / Université Claude Bernard Lyon 1
  • 2. Context & motivation Networks structurally change over time: How to describe these dynamics? a: 2 b: 0 c: 6 deg: 2 u5 u3 u4 u2 a: 7 b: 4 c: 5 deg: 1 a: 2 b: 1 c: 6 deg: 2 u1 u5 u3 u4 u2 a: 7 b: 5 c: 2 deg: 1 a: 5 b: 4 c: 5 deg: 2 u1 u5 u3 u4 u2 a: 8 b: 5 c: 1 deg: 4 a: 5 b: 5 c: 5 deg: 2 u1 u5 u3 u4 u2 a: 9 b: 6 c: 1 deg: 4 a: 6 b: 5 c: 2 deg: 2 u1 u5 u3 u4 u2 a: 9 b: 6 c: 0 deg: 4 a: 7 b: 5 c: 1 deg: 4 u1 u5 u3 u4 u2 1 a+ b+ c- deg+ a+ b+ c- deg+ u1 a: 4 b: 1 c: 5 deg: 1 2 3 4 5 6 Intuition Consider attributed graphs evolving through time The variation of some attribute values (entities attributes) of a node can lead in several cases to a structural change (topological attributes) M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 2
  • 3. Context & motivation a: 2 b: 0 c: 6 deg: 2 u5 u3 u4 u2 a: 7 b: 4 c: 5 deg: 1 a: 2 b: 1 c: 6 deg: 2 u1 u5 u3 u4 u2 a: 7 b: 5 c: 2 deg: 1 a: 5 b: 4 c: 5 deg: 2 u1 u5 u3 u4 u2 a: 8 b: 5 c: 1 deg: 4 a: 5 b: 5 c: 5 deg: 2 u1 u5 u3 u4 u2 a: 9 b: 6 c: 1 deg: 4 a: 6 b: 5 c: 2 deg: 2 u1 u5 u3 u4 u2 a: 9 b: 6 c: 0 deg: 4 a: 7 b: 5 c: 1 deg: 4 u1 u5 u3 u4 u2 1 a+ b+ c- deg+ a+ b+ c- deg+ u1 a: 4 b: 1 c: 5 deg: 1 2 3 4 5 6 A new pattern domain a+ Updating his status more often b+ giving positive opinions about others c− receiving less negative opinions from the others deg+ is often followed by an increase of user’s popularity {a+,b+},{c+},{deg+} is a triggering pattern A problem rooted in pattern mining and graph analysis M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 3
  • 4. Triggering patterns Outline 1 Triggering patterns 2 Method and algorithm 3 Experiments 4 Conclusion M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 4
  • 5. Triggering patterns Dynamic attributed graphs Dynamic attributed graph Let G = {G1,...,Gt} be a sequence of t static attributed graphs Gi = (V,Ei,F) with T = {1,...,t} the set of timestamps V the set of vertices Ei the set of edges that connect vertices of V at time i ∈ T (Ei ⊆ V ×V) F the set of numerical attributes that map each vertex-time pair to a real value: ∀f ∈ F, f : V ×T → R. a: 2 b: 0 c: 6 deg: 2 u5 u3 u4 u2 a: 7 b: 4 c: 5 deg: 1 a: 2 b: 1 c: 6 deg: 2 u1 u5 u3 u4 u2 a: 7 b: 5 c: 2 deg: 1 a: 5 b: 4 c: 5 deg: 2 u1 u5 u3 u4 u2 a: 8 b: 5 c: 1 deg: 4 a: 5 b: 5 c: 5 deg: 2 u1 u5 u3 u4 u2 a: 9 b: 6 c: 1 deg: 4 a: 6 b: 5 c: 2 deg: 2 u1 u5 u3 u4 u2 a: 9 b: 6 c: 0 deg: 4 a: 7 b: 5 c: 1 deg: 4 u1 u5 u3 u4 u2 1 a+ b+ c- deg+ a+ b+ c- deg+ u1 a: 4 b: 1 c: 5 deg: 1 2 3 4 5 6 M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 5
  • 6. Triggering patterns Characterizing vertices behaviors Vertex descriptive sequence A discretization function gives a variation symbol to a vertex/attribute/time triple, e.g. discr(v,d,i) =    + if d(v,i)−d(v,i−1) ≥ 2 and i > 1 − if d(v,i)−d(v,i−1) ≤ −2 and i > 1 /0 otherwise The set of all variations for a vertex v at time i is an itemset vars(v,i) = {ddiscr(v,d,i),∀d ∈ D}. A vertex v is described by a sequence δ(v) = vars(v,1),...,vars(v,t) . ∆ = {δ(v) | v ∈ V} is the set of all sequences. Example δ(u1) = {a+,b+},{c−},{deg+} ∆ = {δ(u1),δ(u2),δ(u3),δ(u4),δ(u5)} M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 6
  • 7. Triggering patterns Pattern domain Triggering pattern A triggering pattern is a sequence P = L,R L is a sequence of sets of descriptor variations: L = X1,...,Xk with ∀j ≤ k, Xj ⊆ (D×S) R a single topological variation, R ∈ (M ×S) Its support is SUPP(P,∆) = {v ∈ V | P δ(v)} where p q means that p is a super-sequence of q Example L = {a+,b+},{c−} R = {deg+} SUPP( L,R ,∆) = {u1,u3} M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 7
  • 8. Triggering patterns Assessing the strength of a pattern? Triggering pattern growth rate Let P = L,R , we denote by ∆R ⊆ ∆ the set of vertex descriptive sequences that contain R. The growth rate of P is given by: GR(P,∆R ) = |SUPP(L,∆R)| |∆R| × |∆∆R| |SUPP(L,∆∆R)| G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. In KDD, pages 43–52, 1999. M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 8
  • 9. Triggering patterns Assessing the diffusion potential of a pattern? Coverage of a triggering pattern Gaggr = (V,Eaggr) an aggregated graph of the dynamic graph The coverage of a pattern P is defined by: COV(P,∆,Gaggr) = SUPP(P,∆)∪{v ∈ V | ∃w ∈ SUPP(P,∆)s.t.(w,v) ∈ Eaggr} It naturally follows that SUPP(P,∆) ⊆ COV(P,∆). Example ρ(P,∆) = COV(P,∆,Gaggr) SUPP(P,∆) ∈ [1,|V|] To distinguish the patterns supported by a group of isolated vertices (values close to 1) to the ones supported by very connected vertices (much higher values than 1). M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 9
  • 10. Triggering patterns The problem The triggering pattern mining problem Given a dynamic attributed graph G a minimum growth rate threshold minGR a minimum coverage threshold minCov the problem is to find all triggering patterns P = L,R with |COV(P,∆)| ≥ minCov GR(P,∆R) ≥ minGR. M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 10
  • 11. Method and algorithm Outline 1 Triggering patterns 2 Method and algorithm 3 Experiments 4 Conclusion M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 11
  • 12. Method and algorithm Methodology Dynamic attributed graph ↓ Choice of an appropriate discretization procedure ↓ Transformation Database of vertex descriptive sequences ↓ Mining closed sequential patterns w.r.t. coverage ↓ Build triggering pattern candidates Triggering pattern candidates ↓ Growth rate computation Triggering patterns Interpretation & vizualisation M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 12
  • 13. Method and algorithm TRIGAT Algorithm TRIGAT Require: G = {(V,Ei,F)}, minGr, minCov, Gaggr Ensure: P the set of closed triggering patterns ∆ ← {δ(v)|v ∈ V} I ← all covering 1-item sequences Filter ∆ with only covering 1-item sequences for all s ∈ I do C ←TRIGAT_enum(s,∆|s,Gaggr,minCov) end for Eliminate non-closed sequences from C C ← prefix closed patterns s,Xk ∈ C, s.t.Xk ∈ (M ×S) for all P = s,Xk ∈ C do Add P to P if GR( s,Xk ,∆Xk ) ≥ minGr end for M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 13
  • 14. Method and algorithm TRIGAT Procedure TRIGAT_ENUM Require: s = S1,...,S ,∆|s,Gaggr, minCov Ensure: C the set of covering sequences of prefix s 1: if not closed_based_prunnable(s) then 2: insert s in C 3: end if 4: Scan ∆|s, find every covering item α ∈ (D×S) such that s can be extended to S1,...,S −1,{S ∪α} or S1,...,S ,α 5: for all valid α do 6: s ← S1,...,S −1,{S ∪α} 7: TRIGAT_enum(s,D|s,Gaggr,minCov) 8: s ← S1,...,S ,α 9: TRIGAT_enum(s,D|s,Gaggr,minCov) 10: end for M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 14
  • 15. Experiments Outline 1 Triggering patterns 2 Method and algorithm 3 Experiments 4 Conclusion M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 15
  • 16. Experiments Quantitative experiments Running times Distribution of support, GR, ... Scalability First qualitative assessments Synchronous/asynchronous events Dense/sparse yet covering |V| |F| |T| |D| S I degsum densitysum DBLP 2723 45 9 360 34.4 6.6 14.7 0.005 RITA1 220 8 30 30 16.3 5.1 15.7 0.07 RITA2 234 8 24 39 4.5 1.8 17 0.07 RITA3 280 6 8 87 28.3 6.5 15.9 0.05 del.icio.us 1867 121 5 400 31 1.6 11 0.003 M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 16
  • 17. Experiments Quantitative results M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 17
  • 18. Experiments The DBLP dataset Detecting asynchronous events Scientific careers of researchers with different experiences Rank Pattern Support Coverage Growth rate ρ 1 {closeness− 1 },{IEEETransKnowlDtEn+},{numCliques+ 1 } → {numCliques− 1 } 15 578 87.4 38.5 2 {clustering++ 1 ,degree++ 1 },{Journal++,eigenvector++ 2 } → {eigenvector++ 3 } 31 546 71.6 17.6 3 {ICDE+,numCliques+ 1 } → {numCliques− 1 } 22 606 64.1 27 4 {eigenvector++ 1 ,degree++ 1 },{VLDB++,degree++ 2 } → {degree++ 3 } 29 580 63.8 20 5 {eigenvector++ 1 ,clustering++ 1 },{Journal++,eigenvector++ 2 } → {eigenvector++ 3 } 36 619 59.3 17.19 6 {ACMTransDBSys+},{numCliques+ 1 } → {numCliques− 1 } 20 547 58.3 27.35 7 {eigenvector++ 1 },{Journal++,betweennes++ 3 } → {betweennes++ 4 } 20 587 58.4 29.35 8 {eigenvector++ 1 },{VLDB++,degree++ 2 } → {degree++ 3 } 30 623 56.47 20.7 9 {SIGMOD−},{numCliques+ 1 } → {numCliques− 1 } 32 754 53.3 23.56 10 {closeness− 1 },{SIGMOD−},{numCliques+ 1 } → {numCliques− 1 } 18 552 52.4 30.6 M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 18
  • 19. Experiments The R.I.T.A. dataset Synchronous events RITA1: daily in September 2001 {#Canceled+}{Degree−,Closeness−,NumCliques−, Pagerank−,Betweennes−} → Degree+ with sup = 5, cov = 144 AIRPORTS THAT ABSORB THE TRAFFIC TWO DAYS AFTER RITA2: monthly in (sept. 2000 ; Sept. 2002 ) {#Canceled+}{#Canceled−},{numCliques−,Betweeness+} → numCliques+ with sup = 8, cov = 61 A "BACK TO NORMAL" AROUND MARCH 2002 RITA3: Aug./Sept. 2005 (Katrina Hurricane) THE MOST DISCRIMINANT APPEARS DURING KATRINA M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 19
  • 20. Experiments The del.ico.us dataset What are the most triggering attributes? how-to, tutorial, web design, visualization “teaching triggering” video, community “social triggering” M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 20
  • 21. Conclusion Outline 1 Triggering patterns 2 Method and algorithm 3 Experiments 4 Conclusion M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 21
  • 22. Conclusion Conclusion Triggering patterns in dynamic graphs Sequences of variation of vertex attribute values that may trigger topological changes Closed sequential pattern mining Growth rate: gives the discrimination power of a sequence to explain a topological change Coverage: tells us about the diffusion potential Main challenge Which aggregated graph to choose when computing the coverage? Patterns image can have (a)-synchronous sequences 2|T| aggregated graphs are possible!! M. Kaytoue, Y. Pitarch, M. Plantevit, C. Robardet Triggering Patterns in Dynamic Graphs 22