SlideShare a Scribd company logo
Semantic SegmentationSemantic Segmentation
Example - Fully Convolutional Networks for SemanticExample - Fully Convolutional Networks for Semantic
SegmentationSegmentation
UC Berkeley
Computer visionComputer vision
picture source
(https://read01.com/Bng557M.html#.W4T_kXUzbiw)
Semantic segmentationSemantic segmentation
Each pixel has its own label!
picture source (https://www.quora.com/What-does-the-term-
semantic-segmentation-mean-in-the-context-of-Deep-Learning)
Typical wayTypical way
Image Model
Outcome
w x h
Label
w x h
cross
entropy
Loss is calculated for each pixel independently.
IssueIssue
How to create dense prediction?
related works:
patchwise training
small model -> small receptive eld
post-processing (e.g. superpixel projection, random eld regularization, ltering
...)
saturating tanh
restricted receptive eld
input shifting and output interlacing
multi-scale pyramid processing
Receptive eldReceptive eld
IdeaIdea
Semantics and location
Global information resolves what while local information resolves where.
global information -> what (semantics)
local information -> where (location)
IdeaIdea
Use train by entire image, instead of patch.
Let receptive eld overlap signi cantly to improve ef ciency.
Transfer learning from classi cation net to fully convolution network.
For pixelwise prediction, connect coarse outputs to pixels.
Fully convolutional networkFully convolutional network
Fully Convolutional Networks for Semantic Segmentation
(https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf)
Convert classi cation net to fully convolution networkConvert classi cation net to fully convolution network
Dense predictionDense prediction
Strategy for upsampling:
Shift-and-stitch
Deconvolution
Shift-and-stitchShift-and-stitch
picture source (https://www.jianshu.com/p/e534e2be5d7d)
DeconvolutionDeconvolution
Deconvolutional network [2015]
Evaluation methodEvaluation method
is the number of the pixel of class predicted to be class
there are different classes
, total number of pixels of class
pixel accuracy:
mean accuracy:
mean region intersection over union (IU):
nij i j
ncl
=ti ∑
j
nij i
/∑
i
nii ∑
i
ti
(1/ ) /ncl ∑
i
nii ∑
i
ti
1
ncl
∑
i
nii
+ −ti ∑
j
nji nii
ResultsResults
Combine coarse and ne feature mapsCombine coarse and ne feature maps
Combine coarse and ne feature mapsCombine coarse and ne feature maps
Combine coarse and ne feature mapsCombine coarse and ne feature maps
32x upsampling
FCN-32sconv 7
conv 7
pool 4
2x upsampling
1 x 1 conv
+
16x upsampling
FCN-16s
pool 3
2x upsampling
conv 7
pool 4
4x upsampling
1 x 1 conv
+
8x upsampling
FCN-8s
ResultsResults
FCN-8s SDS [17] Ground Truth Image
ImportanceImportance
FCN for pixelwise prediction
arbitrary-sized inputs
learning and inference whole image at a time
leverage supervised pre-train model
upsampling (deconvolution)
Take home messageTake home message
more convolution, more coarse
combine coarse and ne feature map (skip architecture)
Deconvolutional network [2015]Deconvolutional network [2015]
Learning Deconvolution Network for Semantic Segmentation
(https://arxiv.org/abs/1505.04366)
Deconvolutional networkDeconvolutional network
[1]
U-Net [2015]U-Net [2015]
copy and crop
input
image
tile
output
segmentation
map
641
128
256
512
1024
max pool 2x2
up-conv 2x2
conv 3x3, ReLU
572x572
284²
64
128
256
512
570x570
568x568
282²
280²140²
138²
136²68²
66²
64²32²
28²
56²
54²
52²
512
104²
102²
100²200²
30²
198²
196²392x392
390x390
388x388
388x388
1024
512 256
256 128
64128 64 2
conv 1x1
U-Net: Convolutional Networks for Biomedical Image
Segmentation (https://arxiv.org/abs/1505.04597)
U-NetU-Net
U-Net: Convolutional Networks for Biomedical Image
Segmentation (https://arxiv.org/abs/1505.04597)
SegNet [2015, University of Cambridge]SegNet [2015, University of Cambridge]
Convolutional Encoder-Decoder Architecture
Convolutional Encoder-Decoder
Pooling Indices
Input
Segmentation
Output
Conv + Batch Normalisation + ReLU
Pooling Upsampling Softmax
RGB Image
SegNetSegNet
high ef ciency
reduce parameters
make end-to-end training availible
My conclusionMy conclusion
Encoder-decoder architecture
Encoder: extract high-level or abstract meanings (semantics)
Decoder: generate instance from abstract meanings
Discriminative model
Generative model
P (y ∣ x)
P (x, y)
Q & AQ & A
ReferenceReference
[1]
[2]
[3]
A brief introduction to recent segmentation methods
(https://www.slideshare.net/mitmul/a-brief-introduction-to-recent-
segmentation-methods)
关于FCN 论⽂中的Shift-and-stitch 的详尽解释
(https://www.jianshu.com/p/e534e2be5d7d)
A 2017 Guide to Semantic Segmentation with Deep Learning
(http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review)

More Related Content

What's hot (20)

PPTX
CNN Machine learning DeepLearning
Abhishek Sharma
 
PDF
Image segmentation with deep learning
Antonio Rueda-Toicen
 
PDF
Generative adversarial networks
남주 김
 
PPTX
[DL輪読会]A closer look at few shot classification
Deep Learning JP
 
PDF
Variational Autoencoder
Mark Chang
 
PPTX
Lecture_16_Self-supervised_Learning.pptx
Karimdabbabi
 
PPTX
Generative Adversarial Networks (GAN)
Manohar Mukku
 
PDF
Autoencoders
CloudxLab
 
PDF
Image classification on Imagenet (D1L4 2017 UPC Deep Learning for Computer Vi...
Universitat Politècnica de Catalunya
 
PPTX
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Simplilearn
 
PDF
GANs and Applications
Hoang Nguyen
 
PPTX
Semantic Segmentation Methods using Deep Learning
Sungjoon Choi
 
PDF
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
PDF
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...
Edureka!
 
PDF
Mask-RCNN for Instance Segmentation
Dat Nguyen
 
PDF
Mask R-CNN
Chanuk Lim
 
PDF
Single Image Super Resolution Overview
LEE HOSEONG
 
PDF
PR-231: A Simple Framework for Contrastive Learning of Visual Representations
Jinwon Lee
 
PPTX
Semantic Segmentation on Satellite Imagery
RAHUL BHOJWANI
 
PPTX
CNN Tutorial
Sungjoon Choi
 
CNN Machine learning DeepLearning
Abhishek Sharma
 
Image segmentation with deep learning
Antonio Rueda-Toicen
 
Generative adversarial networks
남주 김
 
[DL輪読会]A closer look at few shot classification
Deep Learning JP
 
Variational Autoencoder
Mark Chang
 
Lecture_16_Self-supervised_Learning.pptx
Karimdabbabi
 
Generative Adversarial Networks (GAN)
Manohar Mukku
 
Autoencoders
CloudxLab
 
Image classification on Imagenet (D1L4 2017 UPC Deep Learning for Computer Vi...
Universitat Politècnica de Catalunya
 
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Simplilearn
 
GANs and Applications
Hoang Nguyen
 
Semantic Segmentation Methods using Deep Learning
Sungjoon Choi
 
Image Segmentation (D3L1 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
Restricted Boltzmann Machine | Neural Network Tutorial | Deep Learning Tutori...
Edureka!
 
Mask-RCNN for Instance Segmentation
Dat Nguyen
 
Mask R-CNN
Chanuk Lim
 
Single Image Super Resolution Overview
LEE HOSEONG
 
PR-231: A Simple Framework for Contrastive Learning of Visual Representations
Jinwon Lee
 
Semantic Segmentation on Satellite Imagery
RAHUL BHOJWANI
 
CNN Tutorial
Sungjoon Choi
 

Similar to Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation (20)

PPTX
AaSeminar_Template.pptx
ManojGowdaKb
 
PPTX
Review-image-segmentation-by-deep-learning
Trong-An Bui
 
PDF
A brief introduction to recent segmentation methods
Shunta Saito
 
PDF
Semantic Segmentation - Míriam Bellver - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
PDF
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
ynxm25hpxp
 
PDF
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Universitat Politècnica de Catalunya
 
PPTX
Introduction to Segmentation in Computer vision
ParrotAI
 
PDF
IRJET- Semantic Segmentation using Deep Learning
IRJET Journal
 
PDF
Intro to Semantic Segmentation Using Deep Learning
Deep Learning Analytical Solutions​​
 
PPTX
Semantic segmentation with Convolutional Neural Network Approaches
UMBC
 
PPTX
UNetEliyaLaialy (2).pptx
NoorUlHaq47
 
PDF
Deep Learning for Computer Vision: Segmentation (UPC 2016)
Universitat Politècnica de Catalunya
 
PDF
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Ricardo Guerrero Gómez-Olmedo
 
PPTX
Image Segmentation: Approaches and Challenges
Apache MXNet
 
PDF
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
Edge AI and Vision Alliance
 
PDF
Cs231n 2017 lecture11 Detection and Segmentation
Yanbin Kong
 
PDF
Object Segmentation (D2L7 Insight@DCU Machine Learning Workshop 2017)
Universitat Politècnica de Catalunya
 
PDF
The Future of Health Monitoring: Advances in Wearable Sensor Data Processing
IgMin Publications Inc.
 
PDF
Object detection stanford
SyedMahmoodAliRoomi
 
PPTX
cityscapes Semantic Segmentation using FCN, U Net and U Net++.pptx
faizalmistry5
 
AaSeminar_Template.pptx
ManojGowdaKb
 
Review-image-segmentation-by-deep-learning
Trong-An Bui
 
A brief introduction to recent segmentation methods
Shunta Saito
 
Semantic Segmentation - Míriam Bellver - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
ynxm25hpxp
 
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Universitat Politècnica de Catalunya
 
Introduction to Segmentation in Computer vision
ParrotAI
 
IRJET- Semantic Segmentation using Deep Learning
IRJET Journal
 
Intro to Semantic Segmentation Using Deep Learning
Deep Learning Analytical Solutions​​
 
Semantic segmentation with Convolutional Neural Network Approaches
UMBC
 
UNetEliyaLaialy (2).pptx
NoorUlHaq47
 
Deep Learning for Computer Vision: Segmentation (UPC 2016)
Universitat Politècnica de Catalunya
 
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Ricardo Guerrero Gómez-Olmedo
 
Image Segmentation: Approaches and Challenges
Apache MXNet
 
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
Edge AI and Vision Alliance
 
Cs231n 2017 lecture11 Detection and Segmentation
Yanbin Kong
 
Object Segmentation (D2L7 Insight@DCU Machine Learning Workshop 2017)
Universitat Politècnica de Catalunya
 
The Future of Health Monitoring: Advances in Wearable Sensor Data Processing
IgMin Publications Inc.
 
Object detection stanford
SyedMahmoodAliRoomi
 
cityscapes Semantic Segmentation using FCN, U Net and U Net++.pptx
faizalmistry5
 
Ad

More from 岳華 杜 (20)

PDF
[COSCUP 2023] 我的Julia軟體架構演進之旅
岳華 杜
 
PDF
Julia: The language for future
岳華 杜
 
PDF
The Language for future-julia
岳華 杜
 
PDF
20190907 Julia the language for future
岳華 杜
 
PPTX
Metaprogramming in julia
岳華 杜
 
PPTX
Introduction to julia
岳華 杜
 
PDF
自然語言處理概覽
岳華 杜
 
PPTX
Introduction to machine learning
岳華 杜
 
PDF
Batch normalization 與他愉快的小伙伴
岳華 杜
 
PDF
從 VAE 走向深度學習新理論
岳華 杜
 
PDF
COSCUP: Foreign Function Call in Julia
岳華 杜
 
PDF
COSCUP: Metaprogramming in Julia
岳華 杜
 
PPTX
COSCUP: Introduction to Julia
岳華 杜
 
PPTX
Introduction to Julia
岳華 杜
 
PPTX
20180506 Introduction to machine learning
岳華 杜
 
PPTX
20171127 當julia遇上資料科學
岳華 杜
 
PPTX
20171117 oop and design patterns in julia
岳華 杜
 
PPTX
20171014 tips for manipulating filesystem in julia
岳華 杜
 
PDF
20170807 julia的簡單而高效資料處理
岳華 杜
 
PDF
20170715 北Bio meetup
岳華 杜
 
[COSCUP 2023] 我的Julia軟體架構演進之旅
岳華 杜
 
Julia: The language for future
岳華 杜
 
The Language for future-julia
岳華 杜
 
20190907 Julia the language for future
岳華 杜
 
Metaprogramming in julia
岳華 杜
 
Introduction to julia
岳華 杜
 
自然語言處理概覽
岳華 杜
 
Introduction to machine learning
岳華 杜
 
Batch normalization 與他愉快的小伙伴
岳華 杜
 
從 VAE 走向深度學習新理論
岳華 杜
 
COSCUP: Foreign Function Call in Julia
岳華 杜
 
COSCUP: Metaprogramming in Julia
岳華 杜
 
COSCUP: Introduction to Julia
岳華 杜
 
Introduction to Julia
岳華 杜
 
20180506 Introduction to machine learning
岳華 杜
 
20171127 當julia遇上資料科學
岳華 杜
 
20171117 oop and design patterns in julia
岳華 杜
 
20171014 tips for manipulating filesystem in julia
岳華 杜
 
20170807 julia的簡單而高效資料處理
岳華 杜
 
20170715 北Bio meetup
岳華 杜
 
Ad

Recently uploaded (20)

PPTX
01_Approach Cyber- DORA Incident Management.pptx
FinTech Belgium
 
PDF
The Future of Product Management in AI ERA.pdf
Alyona Owens
 
PPTX
Paycifi - Programmable Trust_Breakfast_PPTXT
FinTech Belgium
 
PPSX
Usergroup - OutSystems Architecture.ppsx
Kurt Vandevelde
 
PDF
DoS Attack vs DDoS Attack_ The Silent Wars of the Internet.pdf
CyberPro Magazine
 
PPTX
Enabling the Digital Artisan – keynote at ICOCI 2025
Alan Dix
 
PDF
“Scaling i.MX Applications Processors’ Native Edge AI with Discrete AI Accele...
Edge AI and Vision Alliance
 
PDF
99 Bottles of Trust on the Wall — Operational Principles for Trust in Cyber C...
treyka
 
PDF
How to Comply With Saudi Arabia’s National Cybersecurity Regulations.pdf
Bluechip Advanced Technologies
 
PDF
Automating the Geo-Referencing of Historic Aerial Photography in Flanders
Safe Software
 
PDF
ArcGIS Utility Network Migration - The Hunter Water Story
Safe Software
 
PDF
How to Visualize the ​Spatio-Temporal Data Using CesiumJS​
SANGHEE SHIN
 
PDF
Proactive Server and System Monitoring with FME: Using HTTP and System Caller...
Safe Software
 
PDF
Next level data operations using Power Automate magic
Andries den Haan
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PDF
Why aren't you using FME Flow's CPU Time?
Safe Software
 
PDF
My Journey from CAD to BIM: A True Underdog Story
Safe Software
 
PDF
Hello I'm "AI" Your New _________________
Dr. Tathagat Varma
 
PDF
Darley - FIRST Copenhagen Lightning Talk (2025-06-26) Epochalypse 2038 - Time...
treyka
 
PDF
5 Things to Consider When Deploying AI in Your Enterprise
Safe Software
 
01_Approach Cyber- DORA Incident Management.pptx
FinTech Belgium
 
The Future of Product Management in AI ERA.pdf
Alyona Owens
 
Paycifi - Programmable Trust_Breakfast_PPTXT
FinTech Belgium
 
Usergroup - OutSystems Architecture.ppsx
Kurt Vandevelde
 
DoS Attack vs DDoS Attack_ The Silent Wars of the Internet.pdf
CyberPro Magazine
 
Enabling the Digital Artisan – keynote at ICOCI 2025
Alan Dix
 
“Scaling i.MX Applications Processors’ Native Edge AI with Discrete AI Accele...
Edge AI and Vision Alliance
 
99 Bottles of Trust on the Wall — Operational Principles for Trust in Cyber C...
treyka
 
How to Comply With Saudi Arabia’s National Cybersecurity Regulations.pdf
Bluechip Advanced Technologies
 
Automating the Geo-Referencing of Historic Aerial Photography in Flanders
Safe Software
 
ArcGIS Utility Network Migration - The Hunter Water Story
Safe Software
 
How to Visualize the ​Spatio-Temporal Data Using CesiumJS​
SANGHEE SHIN
 
Proactive Server and System Monitoring with FME: Using HTTP and System Caller...
Safe Software
 
Next level data operations using Power Automate magic
Andries den Haan
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
Why aren't you using FME Flow's CPU Time?
Safe Software
 
My Journey from CAD to BIM: A True Underdog Story
Safe Software
 
Hello I'm "AI" Your New _________________
Dr. Tathagat Varma
 
Darley - FIRST Copenhagen Lightning Talk (2025-06-26) Epochalypse 2038 - Time...
treyka
 
5 Things to Consider When Deploying AI in Your Enterprise
Safe Software
 

Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation