This document discusses several semantic segmentation methods using deep learning, including fully convolutional networks (FCNs), U-Net, and SegNet. FCNs were among the first to use convolutional networks for dense, pixel-wise prediction by converting classification networks to fully convolutional form and combining coarse and fine feature maps. U-Net and SegNet are encoder-decoder architectures that extract high-level semantic features from the input image and then generate pixel-wise predictions, with U-Net copying and cropping features and SegNet using pooling indices for upsampling. These methods demonstrate that convolutional networks can effectively perform semantic segmentation through dense prediction.