This document provides proofs of several basic limit theorems and properties from calculus. It includes:
1) Proofs of three parts of a limit theorem about combining constant multiples, sums, and products of functions with limits.
2) A proof of a basic continuity property regarding limits of composite functions.
3) Proofs of the chain rule of differentiation and that relative extrema of functions occur at critical points.
4) Proofs of two summation formulas involving sums of integers and sums of squared integers.
The proofs illustrate fundamental limit concepts and techniques like choosing appropriate δ values, using preceding results about limits, and algebraic manipulations of expressions involving limits.