
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Deal with Missing Column for Row Names in R
To deal with missing column of row names when converting data frame in R to data.table object, we need to use keep.rownames argument while converting the data frame. For example, if we have a data frame called df that needs to be converted to a data.table object without missing row names then we can use the below command −
data.table(df,keep.rownames=TRUE)
Example
library(data.table) head(mtcars)
Output
mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
Example
mtcars_data_table<-data.table(mtcars) mtcars_data_table
Output
mpg cyl disp hp drat wt qsec vs am gear carb 1: 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 2: 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 3: 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 4: 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 5: 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 6: 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 7: 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 8: 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 9: 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 10: 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 11: 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 12: 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 13: 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 14: 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 15: 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 16: 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 17: 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 18: 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 19: 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 20: 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 21: 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 22: 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 23: 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 24: 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 25: 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 26: 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 27: 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 28: 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 29: 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 30: 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 31: 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 32: 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 mpg cyl disp hp drat wt qsec vs am gear carb
The above output does not include car names. If we want to convert the data frame with car names we can use the argument keep.rownames as shown below −
Example
mtcars_data_table<-data.table(mtcars,keep.rownames=TRUE) mtcars_data_table
Output
rn mpg cyl disp hp drat wt qsec vs am gear carb 1: Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 2: Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 3: Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 4: Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 5: Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 6: Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 7: Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 8: Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 9: Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 10: Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 11: Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 12: Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 13: Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 14: Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 15: Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 16: Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 17: Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 18: Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 19: Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 20: Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 21: Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 22: Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 23: AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.3 0 0 0 3 2 24: Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.410 0 3 4 25: Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 26: Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 27: Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 28: Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 29: Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 30: Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 31: Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 32: Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 rn mpg cyl disp hp drat wt qsec vs am gear carb
Advertisements