
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to find the rank of each value in columns if some columns are categorical in R data frame?
To find the rank of each value in columns if some columns are categorical in R data frame, we can follow the below steps −
First of all, create a data frame.
Then, use numcolwise function from plyr package to find the rank of each value in columns if some columns are categorical.
Example
Create the data frame
Let’s create a data frame as shown below −
Level<-sample(c("low","medium","high"),25,replace=TRUE) Group<-sample(c("first","second"),25,replace=TRUE) DV1<-rnorm(25) DV2<-rnorm(25) df<-data.frame(Level,Group,DV1,DV2) df
Output
On executing, the above script generates the below output(this output will vary on your system due to randomization) −
Level Group DV1 DV2 1 medium first -0.15444635 0.44771691 2 low first 0.64594002 0.70918039 3 medium first 0.11612343 -0.46156286 4 medium second -2.07505385 -0.19145800 5 medium first 0.91928571 0.80887669 6 medium first 0.71592841 0.16538757 7 high second -1.45712679 0.40105329 8 high second -0.57098794 0.97701583 9 high second -0.55531986 0.52548578 10 medium first 0.21788069 -0.89447993 11 low second 0.13378146 -1.54879981 12 low first -1.25162532 0.21650691 13 low second 0.14558721 1.24260380 14 medium second 0.93689245 0.34528017 15 high second -1.25450836 0.34797171 16 low second -0.38612538 0.31359466 17 high first 2.70415465 0.73713265 18 high second -0.12480067 0.37259163 19 high second 0.78704330 -0.35841561 20 low first 0.81727351 -0.74304509 21 medium second 0.61382411 -0.40644606 22 low first 0.39757586 -2.33494132 23 high second -2.07106056 -0.90051548 24 high second -0.08953589 0.09631326 25 high second 0.65695959 -1.10357835
Find the rank of each value in columns if some columns are categorical
Using numcolwise function from plyr package to find the rank of each value in columns if some columns are categorical in the data frame df −
Level<-sample(c("low","medium","high"),25,replace=TRUE) Group<-sample(c("first","second"),25,replace=TRUE) DV1<-rnorm(25) DV2<-rnorm(25) df<-data.frame(Level,Group,DV1,DV2) library(plyr) numcolwise(rank)(df)
Output
DV1 DV2 1 11 15 2 5 3 3 15 5 4 23 23 5 8 17 6 4 11 7 17 10 8 16 21 9 7 24 10 6 14 11 14 1 12 10 9 13 19 19 14 22 12 15 9 16 16 20 2 17 18 22 18 21 18 19 13 7 20 2 25 21 1 20 22 24 6 23 3 13 24 12 8 25 25 4
Advertisements