
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Plotting Regression and Residual Plot in Matplotlib
To establish a simple relationship between the observations of a given joint distribution of a variable, we can create the plot for the regression model using Seaborn.
To fit the dataset using the regression model, we have to first import the necessary libraries in Python.
We will create plots for each regression model, (a) Linear Regression, (b) Polynomial Regression, and (c) Logistic Regression.
In this example, we will use the wine quality dataset which can be accessed from here, https://archive.ics.uci.edu/ml/datasets/wine+quality
Example
import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import pearsonr sns.set(style="dark", color_codes=True) #import the dataset wine_quality = pd.read_csv('winequality-red.csv', delimiter=';') #Plotting Linear Regression R, p = pearsonr(wine_quality['fixed acidity'], wine_quality.pH) g1 = sns.regplot(x='fixed acidity', y='pH', data=wine_quality, truncate=True, ci=99, marker='D', scatter_kws={'color': 'r'}); textstr = '$\mathrm{pearson}\hspace{0.5}\mathrm{R}^2=%.2f$
$\mathrm{pval}=%.2e$ '% (R**2, p) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) g1.text(0.55, 0.95, textstr, fontsize=14, va='top', bbox=props) plt.title('1. Linear Regression', size=15, color='b', weight='bold') #Let us Plot the Polynomial Regression plot for the wine dataset g2 = sns.regplot(x='fixed acidity', y='pH', data=wine_quality, order=2, ci=None, marker='s', scatter_kws={'color': 'skyblue'}, line_kws={'color': 'red'}); plt.title('2. Polynomial Regression', size=15, color='r', weight='bold') #Now plotting the Logistic Regression wine_quality['Q'] = wine_quality['quality'].map({'Low': 0, 'Med': 0, 'High':1}) g2 = sns.regplot(x='fixed acidity', y='Q', logistic=True, n_boot=750, y_jitter=.03, data=wine_quality, line_kws={'color': 'r'}) plt.show(); #Now plot the residual plot g3 = sns.residplot(x='fixed acidity', y='density', order=2, data=wine_quality, scatter_kws={'color': 'r', 'alpha': 0.5}); plt.show();
Running the above code will generate the output as,
Output
Advertisements