
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Sum of Distances in Tree in C++
Suppose we have one undirected, connected tree where N nodes are present. These are labelled as 0...N-1 and N-1 edges are given. The ith edge connects nodes edges[i][0] and edges[i][1] together. We have to find a list where ans[i] is the sum of the distances between node i and all other nodes.
So, if the input is like N = 6 and edges = [(0,1),(0,2),(2,3),(2,4),(2,5)], then the output will be [8,12,6,10,10,10]
To solve this, we will follow these steps −
-
Define a function dfs1(), this will take node, parent,
-
for initialize i := 0, when i < size of graph[node], update (increase i by 1), do −
child := graph[node, i]
-
if child is not equal to parent, then −
dfs1(child, node)
cnt[node] := cnt[node] + cnt[child]
ans[node] := ans[node] + cnt[child] + ans[child]
-
-
Define a function dfs2(), this will take node, parent,
-
for initialize i := 0, when i < size of graph[node], update (increase i by 1), do−
child := graph[node, i]
-
if child is not equal to parent, then −
ans[child] := ans[node] - cnt[child] + N - cnt[child]
dfs2(child, node
-
Define an array ans
Define an array cnt
Define an array graph with 10005 rows
From the main method, do the following −
N of this := N
ans := Define an array of size N
cnt := Define an array of size N, fill this with 1
n := size of edges
-
for initialize i := 0, when i < n, update (increase i by 1), do −
u := edges[i, 0]
v := edges[i, 1]
insert v at the end of graph[u]
insert u at the end of graph[v]
dfs1(0, -1)
dfs2(0, -1)
return ans
Let us see the following implementation to get better understanding −
Example
#include <bits/stdc++.h> using namespace std; void print_vector(vector<auto> v){ cout << "["; for(int i = 0; i<v.size(); i++){ cout << v[i] << ", "; } cout << "]"<<endl; } class Solution { public: void dfs1(int node, int parent) { for (int i = 0; i < graph[node].size(); i++) { int child = graph[node][i]; if (child != parent) { dfs1(child, node); cnt[node] += cnt[child]; ans[node] += cnt[child] + ans[child]; } } } void dfs2(int node, int parent) { for (int i = 0; i < graph[node].size(); i++) { int child = graph[node][i]; if (child != parent) { ans[child] = ans[node] - cnt[child] + N - cnt[child]; dfs2(child, node); } } } vector<int> ans; vector<int> cnt; vector<int> graph[10005]; int N; vector<int> sumOfDistancesInTree(int N, vector<vector<int> >& edges) { this->N = N; ans = vector<int>(N); cnt = vector<int>(N, 1); int n = edges.size(); for (int i = 0; i < n; i++) { int u = edges[i][0]; int v = edges[i][1]; graph[u].push_back(v); graph[v].push_back(u); } dfs1(0, -1); dfs2(0, -1); return ans; } }; main(){ Solution ob; vector<vector<int>> v = {{0,1},{0,2},{2,3},{2,4},{2,5}}; print_vector(ob.sumOfDistancesInTree(6, v)); }
Input
{{0,1},{0,2},{2,3},{2,4},{2,5}}
Output
[8, 12, 6, 10, 10, 10, ]