blob: 5ec9705747c98eab8b06c8eebabc8be5a16eb38b [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/browser/byte_stream.h"
#include <stddef.h>
#include <limits>
#include <vector>
#include "base/compiler_specific.h"
#include "base/containers/circular_deque.h"
#include "base/containers/to_vector.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/memory/ref_counted.h"
#include "base/run_loop.h"
#include "base/task/single_thread_task_runner.h"
#include "base/test/task_environment.h"
#include "base/test/test_simple_task_runner.h"
#include "net/base/io_buffer.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace content {
namespace {
void CountCallbacks(int* counter) {
++*counter;
}
} // namespace
class ByteStreamTest : public testing::Test {
public:
// Create a new IO buffer of the given |buffer_size|. Details of the
// contents of the created buffer will be kept, and can be validated
// by ValidateIOBuffer.
scoped_refptr<net::IOBuffer> NewIOBuffer(size_t buffer_size) {
static uint8_t seed = 0;
auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(buffer_size);
base::span<uint8_t> span = buffer->span();
for (size_t i = 0; i < buffer_size; i++) {
span[i] = ++seed;
}
data_queue_.emplace_back(base::ToVector(span));
return buffer;
}
// Create an IOBuffer of the appropriate size and add it to the
// ByteStream, returning the result of the ByteStream::Write.
// Separate function to avoid duplication of buffer_size in test
// calls.
bool Write(ByteStreamWriter* byte_stream_input, size_t buffer_size) {
return byte_stream_input->Write(NewIOBuffer(buffer_size), buffer_size);
}
// Validate that we have the IOBuffer we expect. This routine must be
// called on buffers that were allocated from NewIOBuffer, and in the
// order that they were allocated. Calls to NewIOBuffer &&
// ValidateIOBuffer may be interleaved.
bool ValidateIOBuffer(scoped_refptr<net::IOBuffer> buffer) {
base::span<const uint8_t> buffer_span = buffer->span();
std::vector<uint8_t> expected_data = data_queue_.front();
data_queue_.pop_front();
EXPECT_EQ(buffer_span, expected_data);
return buffer_span == expected_data;
}
private:
base::test::SingleThreadTaskEnvironment task_environment_;
base::circular_deque<std::vector<uint8_t>> data_queue_;
};
// Confirm that filling and emptying the stream works properly, and that
// we get full triggers when we expect.
TEST_F(ByteStreamTest, ByteStream_PushBack) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(base::SingleThreadTaskRunner::GetCurrentDefault(),
base::SingleThreadTaskRunner::GetCurrentDefault(), 3 * 1024,
&byte_stream_input, &byte_stream_output);
// Push a series of IO buffers on; test pushback happening and
// that it's advisory.
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
EXPECT_FALSE(Write(byte_stream_input.get(), 1));
EXPECT_FALSE(Write(byte_stream_input.get(), 1024));
// Flush
byte_stream_input->Close(0);
EXPECT_EQ(4 * 1024U + 1U, byte_stream_input->GetTotalBufferedBytes());
base::RunLoop().RunUntilIdle();
// Data already sent to reader is also counted in.
EXPECT_EQ(4 * 1024U + 1U, byte_stream_input->GetTotalBufferedBytes());
// Pull the IO buffers out; do we get the same buffers and do they
// have the same contents?
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
base::RunLoop().RunUntilIdle();
// Reader now knows that all data is read out.
EXPECT_EQ(1024U, byte_stream_input->GetTotalBufferedBytes());
}
// Confirm that Flush() method makes the writer to send written contents to
// the reader.
TEST_F(ByteStreamTest, ByteStream_Flush) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(base::SingleThreadTaskRunner::GetCurrentDefault(),
base::SingleThreadTaskRunner::GetCurrentDefault(), 1024,
&byte_stream_input, &byte_stream_output);
EXPECT_TRUE(Write(byte_stream_input.get(), 1));
base::RunLoop().RunUntilIdle();
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length = 0;
// Check that data is not sent to the reader yet.
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
byte_stream_input->Flush();
base::RunLoop().RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
// Check that it's ok to Flush() an empty writer.
byte_stream_input->Flush();
base::RunLoop().RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
byte_stream_input->Close(0);
base::RunLoop().RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
// Same as above, only use knowledge of the internals to confirm
// that we're getting pushback even when data's split across the two
// objects
TEST_F(ByteStreamTest, ByteStream_PushBackSplit) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(base::SingleThreadTaskRunner::GetCurrentDefault(),
base::SingleThreadTaskRunner::GetCurrentDefault(), 9 * 1024,
&byte_stream_input, &byte_stream_output);
// Push a series of IO buffers on; test pushback happening and
// that it's advisory.
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
base::RunLoop().RunUntilIdle();
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
base::RunLoop().RunUntilIdle();
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
base::RunLoop().RunUntilIdle();
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
base::RunLoop().RunUntilIdle();
EXPECT_FALSE(Write(byte_stream_input.get(), 6 * 1024));
base::RunLoop().RunUntilIdle();
// Pull the IO buffers out; do we get the same buffers and do they
// have the same contents?
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
// Confirm that a Close() notification transmits in-order
// with data on the stream.
TEST_F(ByteStreamTest, ByteStream_CompleteTransmits) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
// Empty stream, non-error case.
CreateByteStream(base::SingleThreadTaskRunner::GetCurrentDefault(),
base::SingleThreadTaskRunner::GetCurrentDefault(), 3 * 1024,
&byte_stream_input, &byte_stream_output);
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
byte_stream_input->Close(0);
base::RunLoop().RunUntilIdle();
ASSERT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_EQ(0, byte_stream_output->GetStatus());
// Non-empty stream, non-error case.
CreateByteStream(base::SingleThreadTaskRunner::GetCurrentDefault(),
base::SingleThreadTaskRunner::GetCurrentDefault(), 3 * 1024,
&byte_stream_input, &byte_stream_output);
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
byte_stream_input->Close(0);
base::RunLoop().RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
ASSERT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_EQ(0, byte_stream_output->GetStatus());
const int kFakeErrorCode = 22;
// Empty stream, error case.
CreateByteStream(base::SingleThreadTaskRunner::GetCurrentDefault(),
base::SingleThreadTaskRunner::GetCurrentDefault(), 3 * 1024,
&byte_stream_input, &byte_stream_output);
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
byte_stream_input->Close(kFakeErrorCode);
base::RunLoop().RunUntilIdle();
ASSERT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_EQ(kFakeErrorCode, byte_stream_output->GetStatus());
// Non-empty stream, error case.
CreateByteStream(base::SingleThreadTaskRunner::GetCurrentDefault(),
base::SingleThreadTaskRunner::GetCurrentDefault(), 3 * 1024,
&byte_stream_input, &byte_stream_output);
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
byte_stream_input->Close(kFakeErrorCode);
base::RunLoop().RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
ASSERT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_EQ(kFakeErrorCode, byte_stream_output->GetStatus());
}
// Confirm that callbacks on the sink side are triggered when they should be.
TEST_F(ByteStreamTest, ByteStream_SinkCallback) {
scoped_refptr<base::TestSimpleTaskRunner> task_runner(
new base::TestSimpleTaskRunner());
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(base::SingleThreadTaskRunner::GetCurrentDefault(),
task_runner, 10000, &byte_stream_input, &byte_stream_output);
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
// Note that the specifics of when the callbacks are called with regard
// to how much data is pushed onto the stream is not (currently) part
// of the interface contract. If it becomes part of the contract, the
// tests below should get much more precise.
// Confirm callback called when you add more than 33% of the buffer.
// Setup callback
int num_callbacks = 0;
byte_stream_output->RegisterCallback(
base::BindRepeating(CountCallbacks, &num_callbacks));
EXPECT_TRUE(Write(byte_stream_input.get(), 4000));
base::RunLoop().RunUntilIdle();
EXPECT_EQ(0, num_callbacks);
task_runner->RunUntilIdle();
EXPECT_EQ(1, num_callbacks);
// Check data and stream state.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
// Confirm callback *isn't* called at less than 33% (by lack of
// unexpected call on task runner).
EXPECT_TRUE(Write(byte_stream_input.get(), 3000));
base::RunLoop().RunUntilIdle();
// This reflects an implementation artifact that data goes with callbacks,
// which should not be considered part of the interface guarantee.
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
// Confirm that callbacks on the source side are triggered when they should
// be.
TEST_F(ByteStreamTest, ByteStream_SourceCallback) {
scoped_refptr<base::TestSimpleTaskRunner> task_runner(
new base::TestSimpleTaskRunner());
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(task_runner,
base::SingleThreadTaskRunner::GetCurrentDefault(), 10000,
&byte_stream_input, &byte_stream_output);
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
// Note that the specifics of when the callbacks are called with regard
// to how much data is pulled from the stream is not (currently) part
// of the interface contract. If it becomes part of the contract, the
// tests below should get much more precise.
// Confirm callback called when about 33% space available, and not
// at other transitions.
// Add data.
int num_callbacks = 0;
byte_stream_input->RegisterCallback(
base::BindRepeating(CountCallbacks, &num_callbacks));
EXPECT_TRUE(Write(byte_stream_input.get(), 2000));
EXPECT_TRUE(Write(byte_stream_input.get(), 2001));
EXPECT_FALSE(Write(byte_stream_input.get(), 6000));
// Allow bytes to transition (needed for message passing implementation),
// and get and validate the data.
base::RunLoop().RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
// Grab data, triggering callback. Recorded on dispatch, but doesn't
// happen because it's caught by the mock.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
// Confirm that the callback passed to the mock does what we expect.
EXPECT_EQ(0, num_callbacks);
task_runner->RunUntilIdle();
EXPECT_EQ(1, num_callbacks);
// Same drill with final buffer.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_EQ(1, num_callbacks);
task_runner->RunUntilIdle();
// Should have updated the internal structures but not called the
// callback.
EXPECT_EQ(1, num_callbacks);
}
// Confirm that racing a change to a sink callback with a post results
// in the new callback being called.
TEST_F(ByteStreamTest, ByteStream_SinkInterrupt) {
scoped_refptr<base::TestSimpleTaskRunner> task_runner(
new base::TestSimpleTaskRunner());
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(base::SingleThreadTaskRunner::GetCurrentDefault(),
task_runner, 10000, &byte_stream_input, &byte_stream_output);
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
// Record initial state.
int num_callbacks = 0;
byte_stream_output->RegisterCallback(
base::BindRepeating(CountCallbacks, &num_callbacks));
// Add data, and pass it across.
EXPECT_TRUE(Write(byte_stream_input.get(), 4000));
base::RunLoop().RunUntilIdle();
// The task runner should have been hit, but the callback count
// isn't changed until we actually run the callback.
EXPECT_EQ(0, num_callbacks);
// If we change the callback now, the new one should be run
// (simulates race with post task).
int num_alt_callbacks = 0;
byte_stream_output->RegisterCallback(
base::BindRepeating(CountCallbacks, &num_alt_callbacks));
task_runner->RunUntilIdle();
EXPECT_EQ(0, num_callbacks);
EXPECT_EQ(1, num_alt_callbacks);
// Final cleanup.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
// Confirm that racing a change to a source callback with a post results
// in the new callback being called.
TEST_F(ByteStreamTest, ByteStream_SourceInterrupt) {
scoped_refptr<base::TestSimpleTaskRunner> task_runner(
new base::TestSimpleTaskRunner());
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(task_runner,
base::SingleThreadTaskRunner::GetCurrentDefault(), 10000,
&byte_stream_input, &byte_stream_output);
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
// Setup state for test.
int num_callbacks = 0;
byte_stream_input->RegisterCallback(
base::BindRepeating(CountCallbacks, &num_callbacks));
EXPECT_TRUE(Write(byte_stream_input.get(), 2000));
EXPECT_TRUE(Write(byte_stream_input.get(), 2001));
EXPECT_FALSE(Write(byte_stream_input.get(), 6000));
base::RunLoop().RunUntilIdle();
// Initial get should not trigger callback.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
base::RunLoop().RunUntilIdle();
// Second get *should* trigger callback.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
// Which should do the right thing when it's run.
int num_alt_callbacks = 0;
byte_stream_input->RegisterCallback(
base::BindRepeating(CountCallbacks, &num_alt_callbacks));
task_runner->RunUntilIdle();
EXPECT_EQ(0, num_callbacks);
EXPECT_EQ(1, num_alt_callbacks);
// Third get should also trigger callback.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer));
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
// Confirm that callback is called on zero data transfer but source
// complete.
TEST_F(ByteStreamTest, ByteStream_ZeroCallback) {
scoped_refptr<base::TestSimpleTaskRunner> task_runner(
new base::TestSimpleTaskRunner());
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(base::SingleThreadTaskRunner::GetCurrentDefault(),
task_runner, 10000, &byte_stream_input, &byte_stream_output);
// Record initial state.
int num_callbacks = 0;
byte_stream_output->RegisterCallback(
base::BindRepeating(CountCallbacks, &num_callbacks));
// Immediately close the stream.
byte_stream_input->Close(0);
task_runner->RunUntilIdle();
EXPECT_EQ(1, num_callbacks);
}
TEST_F(ByteStreamTest, ByteStream_CloseWithoutAnyWrite) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(base::SingleThreadTaskRunner::GetCurrentDefault(),
base::SingleThreadTaskRunner::GetCurrentDefault(), 3 * 1024,
&byte_stream_input, &byte_stream_output);
byte_stream_input->Close(0);
base::RunLoop().RunUntilIdle();
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
EXPECT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
TEST_F(ByteStreamTest, ByteStream_FlushWithoutAnyWrite) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(base::SingleThreadTaskRunner::GetCurrentDefault(),
base::SingleThreadTaskRunner::GetCurrentDefault(), 3 * 1024,
&byte_stream_input, &byte_stream_output);
byte_stream_input->Flush();
base::RunLoop().RunUntilIdle();
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
byte_stream_input->Close(0);
base::RunLoop().RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
TEST_F(ByteStreamTest, ByteStream_WriteOverflow) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(base::SingleThreadTaskRunner::GetCurrentDefault(),
base::SingleThreadTaskRunner::GetCurrentDefault(),
std::numeric_limits<size_t>::max(), &byte_stream_input,
&byte_stream_output);
EXPECT_TRUE(Write(byte_stream_input.get(), 1));
// 1 + size_t max -> Overflow.
scoped_refptr<net::IOBuffer> empty_io_buffer;
EXPECT_FALSE(byte_stream_input->Write(empty_io_buffer,
std::numeric_limits<size_t>::max()));
base::RunLoop().RunUntilIdle();
// The first write is below PostToPeer threshold. We shouldn't get anything
// from the output.
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
} // namespace content