clang 21.0.0git
SemaARM.cpp
Go to the documentation of this file.
1//===------ SemaARM.cpp ---------- ARM target-specific routines -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis functions specific to ARM.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/SemaARM.h"
19#include "clang/Sema/Sema.h"
20
21namespace clang {
22
24
25/// BuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
27 CallExpr *TheCall) {
28 ASTContext &Context = getASTContext();
29
30 if (BuiltinID == AArch64::BI__builtin_arm_irg) {
31 if (SemaRef.checkArgCount(TheCall, 2))
32 return true;
33 Expr *Arg0 = TheCall->getArg(0);
34 Expr *Arg1 = TheCall->getArg(1);
35
37 if (FirstArg.isInvalid())
38 return true;
39 QualType FirstArgType = FirstArg.get()->getType();
40 if (!FirstArgType->isAnyPointerType())
41 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
42 << "first" << FirstArgType << Arg0->getSourceRange();
43 TheCall->setArg(0, FirstArg.get());
44
46 if (SecArg.isInvalid())
47 return true;
48 QualType SecArgType = SecArg.get()->getType();
49 if (!SecArgType->isIntegerType())
50 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
51 << "second" << SecArgType << Arg1->getSourceRange();
52
53 // Derive the return type from the pointer argument.
54 TheCall->setType(FirstArgType);
55 return false;
56 }
57
58 if (BuiltinID == AArch64::BI__builtin_arm_addg) {
59 if (SemaRef.checkArgCount(TheCall, 2))
60 return true;
61
62 Expr *Arg0 = TheCall->getArg(0);
64 if (FirstArg.isInvalid())
65 return true;
66 QualType FirstArgType = FirstArg.get()->getType();
67 if (!FirstArgType->isAnyPointerType())
68 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
69 << "first" << FirstArgType << Arg0->getSourceRange();
70 TheCall->setArg(0, FirstArg.get());
71
72 // Derive the return type from the pointer argument.
73 TheCall->setType(FirstArgType);
74
75 // Second arg must be an constant in range [0,15]
76 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, 15);
77 }
78
79 if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
80 if (SemaRef.checkArgCount(TheCall, 2))
81 return true;
82 Expr *Arg0 = TheCall->getArg(0);
83 Expr *Arg1 = TheCall->getArg(1);
84
86 if (FirstArg.isInvalid())
87 return true;
88 QualType FirstArgType = FirstArg.get()->getType();
89 if (!FirstArgType->isAnyPointerType())
90 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
91 << "first" << FirstArgType << Arg0->getSourceRange();
92
93 QualType SecArgType = Arg1->getType();
94 if (!SecArgType->isIntegerType())
95 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
96 << "second" << SecArgType << Arg1->getSourceRange();
97 TheCall->setType(Context.IntTy);
98 return false;
99 }
100
101 if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
102 BuiltinID == AArch64::BI__builtin_arm_stg) {
103 if (SemaRef.checkArgCount(TheCall, 1))
104 return true;
105 Expr *Arg0 = TheCall->getArg(0);
107 if (FirstArg.isInvalid())
108 return true;
109
110 QualType FirstArgType = FirstArg.get()->getType();
111 if (!FirstArgType->isAnyPointerType())
112 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
113 << "first" << FirstArgType << Arg0->getSourceRange();
114 TheCall->setArg(0, FirstArg.get());
115
116 // Derive the return type from the pointer argument.
117 if (BuiltinID == AArch64::BI__builtin_arm_ldg)
118 TheCall->setType(FirstArgType);
119 return false;
120 }
121
122 if (BuiltinID == AArch64::BI__builtin_arm_subp) {
123 Expr *ArgA = TheCall->getArg(0);
124 Expr *ArgB = TheCall->getArg(1);
125
128
129 if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
130 return true;
131
132 QualType ArgTypeA = ArgExprA.get()->getType();
133 QualType ArgTypeB = ArgExprB.get()->getType();
134
135 auto isNull = [&](Expr *E) -> bool {
136 return E->isNullPointerConstant(Context,
138 };
139
140 // argument should be either a pointer or null
141 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
142 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
143 << "first" << ArgTypeA << ArgA->getSourceRange();
144
145 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
146 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
147 << "second" << ArgTypeB << ArgB->getSourceRange();
148
149 // Ensure Pointee types are compatible
150 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
151 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
152 QualType pointeeA = ArgTypeA->getPointeeType();
153 QualType pointeeB = ArgTypeB->getPointeeType();
154 if (!Context.typesAreCompatible(
155 Context.getCanonicalType(pointeeA).getUnqualifiedType(),
156 Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
157 return Diag(TheCall->getBeginLoc(),
158 diag::err_typecheck_sub_ptr_compatible)
159 << ArgTypeA << ArgTypeB << ArgA->getSourceRange()
160 << ArgB->getSourceRange();
161 }
162 }
163
164 // at least one argument should be pointer type
165 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
166 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
167 << ArgTypeA << ArgTypeB << ArgA->getSourceRange();
168
169 if (isNull(ArgA)) // adopt type of the other pointer
170 ArgExprA =
171 SemaRef.ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
172
173 if (isNull(ArgB))
174 ArgExprB =
175 SemaRef.ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
176
177 TheCall->setArg(0, ArgExprA.get());
178 TheCall->setArg(1, ArgExprB.get());
179 TheCall->setType(Context.LongLongTy);
180 return false;
181 }
182 assert(false && "Unhandled ARM MTE intrinsic");
183 return true;
184}
185
186/// BuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
187/// TheCall is an ARM/AArch64 special register string literal.
188bool SemaARM::BuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
189 int ArgNum, unsigned ExpectedFieldNum,
190 bool AllowName) {
191 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
192 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
193 BuiltinID == ARM::BI__builtin_arm_rsr ||
194 BuiltinID == ARM::BI__builtin_arm_rsrp ||
195 BuiltinID == ARM::BI__builtin_arm_wsr ||
196 BuiltinID == ARM::BI__builtin_arm_wsrp;
197 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
198 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
199 BuiltinID == AArch64::BI__builtin_arm_rsr128 ||
200 BuiltinID == AArch64::BI__builtin_arm_wsr128 ||
201 BuiltinID == AArch64::BI__builtin_arm_rsr ||
202 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
203 BuiltinID == AArch64::BI__builtin_arm_wsr ||
204 BuiltinID == AArch64::BI__builtin_arm_wsrp;
205 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
206
207 // We can't check the value of a dependent argument.
208 Expr *Arg = TheCall->getArg(ArgNum);
209 if (Arg->isTypeDependent() || Arg->isValueDependent())
210 return false;
211
212 // Check if the argument is a string literal.
213 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
214 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
215 << Arg->getSourceRange();
216
217 // Check the type of special register given.
218 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
220 Reg.split(Fields, ":");
221
222 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
223 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
224 << Arg->getSourceRange();
225
226 // If the string is the name of a register then we cannot check that it is
227 // valid here but if the string is of one the forms described in ACLE then we
228 // can check that the supplied fields are integers and within the valid
229 // ranges.
230 if (Fields.size() > 1) {
231 bool FiveFields = Fields.size() == 5;
232
233 bool ValidString = true;
234 if (IsARMBuiltin) {
235 ValidString &= Fields[0].starts_with_insensitive("cp") ||
236 Fields[0].starts_with_insensitive("p");
237 if (ValidString)
238 Fields[0] = Fields[0].drop_front(
239 Fields[0].starts_with_insensitive("cp") ? 2 : 1);
240
241 ValidString &= Fields[2].starts_with_insensitive("c");
242 if (ValidString)
243 Fields[2] = Fields[2].drop_front(1);
244
245 if (FiveFields) {
246 ValidString &= Fields[3].starts_with_insensitive("c");
247 if (ValidString)
248 Fields[3] = Fields[3].drop_front(1);
249 }
250 }
251
252 SmallVector<int, 5> Ranges;
253 if (FiveFields)
254 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
255 else
256 Ranges.append({15, 7, 15});
257
258 for (unsigned i = 0; i < Fields.size(); ++i) {
259 int IntField;
260 ValidString &= !Fields[i].getAsInteger(10, IntField);
261 ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
262 }
263
264 if (!ValidString)
265 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
266 << Arg->getSourceRange();
267 } else if (IsAArch64Builtin && Fields.size() == 1) {
268 // This code validates writes to PSTATE registers.
269
270 // Not a write.
271 if (TheCall->getNumArgs() != 2)
272 return false;
273
274 // The 128-bit system register accesses do not touch PSTATE.
275 if (BuiltinID == AArch64::BI__builtin_arm_rsr128 ||
276 BuiltinID == AArch64::BI__builtin_arm_wsr128)
277 return false;
278
279 // These are the named PSTATE accesses using "MSR (immediate)" instructions,
280 // along with the upper limit on the immediates allowed.
281 auto MaxLimit = llvm::StringSwitch<std::optional<unsigned>>(Reg)
282 .CaseLower("spsel", 15)
283 .CaseLower("daifclr", 15)
284 .CaseLower("daifset", 15)
285 .CaseLower("pan", 15)
286 .CaseLower("uao", 15)
287 .CaseLower("dit", 15)
288 .CaseLower("ssbs", 15)
289 .CaseLower("tco", 15)
290 .CaseLower("allint", 1)
291 .CaseLower("pm", 1)
292 .Default(std::nullopt);
293
294 // If this is not a named PSTATE, just continue without validating, as this
295 // will be lowered to an "MSR (register)" instruction directly
296 if (!MaxLimit)
297 return false;
298
299 // Here we only allow constants in the range for that pstate, as required by
300 // the ACLE.
301 //
302 // While clang also accepts the names of system registers in its ACLE
303 // intrinsics, we prevent this with the PSTATE names used in MSR (immediate)
304 // as the value written via a register is different to the value used as an
305 // immediate to have the same effect. e.g., for the instruction `msr tco,
306 // x0`, it is bit 25 of register x0 that is written into PSTATE.TCO, but
307 // with `msr tco, #imm`, it is bit 0 of xN that is written into PSTATE.TCO.
308 //
309 // If a programmer wants to codegen the MSR (register) form of `msr tco,
310 // xN`, they can still do so by specifying the register using five
311 // colon-separated numbers in a string.
312 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, *MaxLimit);
313 }
314
315 return false;
316}
317
318/// getNeonEltType - Return the QualType corresponding to the elements of
319/// the vector type specified by the NeonTypeFlags. This is used to check
320/// the pointer arguments for Neon load/store intrinsics.
322 bool IsPolyUnsigned, bool IsInt64Long) {
323 switch (Flags.getEltType()) {
325 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
327 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
329 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
331 if (IsInt64Long)
332 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
333 else
334 return Flags.isUnsigned() ? Context.UnsignedLongLongTy
335 : Context.LongLongTy;
337 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
339 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
341 if (IsInt64Long)
342 return Context.UnsignedLongTy;
343 else
344 return Context.UnsignedLongLongTy;
346 break;
348 return Context.HalfTy;
350 return Context.FloatTy;
352 return Context.DoubleTy;
354 return Context.BFloat16Ty;
356 return Context.MFloat8Ty;
357 }
358 llvm_unreachable("Invalid NeonTypeFlag!");
359}
360
361enum ArmSMEState : unsigned {
363
364 ArmInZA = 0b01,
365 ArmOutZA = 0b10,
367 ArmZAMask = 0b11,
368
369 ArmInZT0 = 0b01 << 2,
370 ArmOutZT0 = 0b10 << 2,
371 ArmInOutZT0 = 0b11 << 2,
372 ArmZT0Mask = 0b11 << 2
374
375bool SemaARM::CheckImmediateArg(CallExpr *TheCall, unsigned CheckTy,
376 unsigned ArgIdx, unsigned EltBitWidth,
377 unsigned ContainerBitWidth) {
378 // Function that checks whether the operand (ArgIdx) is an immediate
379 // that is one of a given set of values.
380 auto CheckImmediateInSet = [&](std::initializer_list<int64_t> Set,
381 int ErrDiag) -> bool {
382 // We can't check the value of a dependent argument.
383 Expr *Arg = TheCall->getArg(ArgIdx);
384 if (Arg->isTypeDependent() || Arg->isValueDependent())
385 return false;
386
387 // Check constant-ness first.
388 llvm::APSInt Imm;
389 if (SemaRef.BuiltinConstantArg(TheCall, ArgIdx, Imm))
390 return true;
391
392 if (std::find(Set.begin(), Set.end(), Imm.getSExtValue()) == Set.end())
393 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
394 return false;
395 };
396
397 switch ((ImmCheckType)CheckTy) {
398 case ImmCheckType::ImmCheck0_31:
399 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 31))
400 return true;
401 break;
402 case ImmCheckType::ImmCheck0_13:
403 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 13))
404 return true;
405 break;
406 case ImmCheckType::ImmCheck0_63:
407 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 63))
408 return true;
409 break;
410 case ImmCheckType::ImmCheck1_16:
411 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, 16))
412 return true;
413 break;
414 case ImmCheckType::ImmCheck0_7:
415 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 7))
416 return true;
417 break;
418 case ImmCheckType::ImmCheck1_1:
419 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, 1))
420 return true;
421 break;
422 case ImmCheckType::ImmCheck1_3:
423 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, 3))
424 return true;
425 break;
426 case ImmCheckType::ImmCheck1_7:
427 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, 7))
428 return true;
429 break;
430 case ImmCheckType::ImmCheckExtract:
431 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0,
432 (2048 / EltBitWidth) - 1))
433 return true;
434 break;
435 case ImmCheckType::ImmCheckCvt:
436 case ImmCheckType::ImmCheckShiftRight:
437 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, EltBitWidth))
438 return true;
439 break;
440 case ImmCheckType::ImmCheckShiftRightNarrow:
441 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, EltBitWidth / 2))
442 return true;
443 break;
444 case ImmCheckType::ImmCheckShiftLeft:
445 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, EltBitWidth - 1))
446 return true;
447 break;
448 case ImmCheckType::ImmCheckLaneIndex:
449 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0,
450 (ContainerBitWidth / EltBitWidth) - 1))
451 return true;
452 break;
453 case ImmCheckType::ImmCheckLaneIndexCompRotate:
455 TheCall, ArgIdx, 0, (ContainerBitWidth / (2 * EltBitWidth)) - 1))
456 return true;
457 break;
458 case ImmCheckType::ImmCheckLaneIndexDot:
460 TheCall, ArgIdx, 0, (ContainerBitWidth / (4 * EltBitWidth)) - 1))
461 return true;
462 break;
463 case ImmCheckType::ImmCheckComplexRot90_270:
464 if (CheckImmediateInSet({90, 270}, diag::err_rotation_argument_to_cadd))
465 return true;
466 break;
467 case ImmCheckType::ImmCheckComplexRotAll90:
468 if (CheckImmediateInSet({0, 90, 180, 270},
469 diag::err_rotation_argument_to_cmla))
470 return true;
471 break;
472 case ImmCheckType::ImmCheck0_1:
473 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 1))
474 return true;
475 break;
476 case ImmCheckType::ImmCheck0_2:
477 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 2))
478 return true;
479 break;
480 case ImmCheckType::ImmCheck0_3:
481 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 3))
482 return true;
483 break;
484 case ImmCheckType::ImmCheck0_0:
485 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 0))
486 return true;
487 break;
488 case ImmCheckType::ImmCheck0_15:
489 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 15))
490 return true;
491 break;
492 case ImmCheckType::ImmCheck0_255:
493 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 0, 255))
494 return true;
495 break;
496 case ImmCheckType::ImmCheck1_32:
497 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, 32))
498 return true;
499 break;
500 case ImmCheckType::ImmCheck1_64:
501 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 1, 64))
502 return true;
503 break;
504 case ImmCheckType::ImmCheck2_4_Mul2:
505 if (SemaRef.BuiltinConstantArgRange(TheCall, ArgIdx, 2, 4) ||
506 SemaRef.BuiltinConstantArgMultiple(TheCall, ArgIdx, 2))
507 return true;
508 break;
509 }
510 return false;
511}
512
514 CallExpr *TheCall,
515 SmallVectorImpl<std::tuple<int, int, int, int>> &ImmChecks,
516 int OverloadType) {
517 bool HasError = false;
518
519 for (const auto &I : ImmChecks) {
520 auto [ArgIdx, CheckTy, ElementBitWidth, VecBitWidth] = I;
521
522 if (OverloadType >= 0)
523 ElementBitWidth = NeonTypeFlags(OverloadType).getEltSizeInBits();
524
525 HasError |= CheckImmediateArg(TheCall, CheckTy, ArgIdx, ElementBitWidth,
526 VecBitWidth);
527 }
528
529 return HasError;
530}
531
533 CallExpr *TheCall, SmallVectorImpl<std::tuple<int, int, int>> &ImmChecks) {
534 bool HasError = false;
535
536 for (const auto &I : ImmChecks) {
537 auto [ArgIdx, CheckTy, ElementBitWidth] = I;
538 HasError |=
539 CheckImmediateArg(TheCall, CheckTy, ArgIdx, ElementBitWidth, 128);
540 }
541
542 return HasError;
543}
544
546 if (FD->hasAttr<ArmLocallyStreamingAttr>())
548 if (const Type *Ty = FD->getType().getTypePtrOrNull()) {
549 if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
550 if (FPT->getAArch64SMEAttributes() &
553 if (FPT->getAArch64SMEAttributes() &
556 }
557 }
559}
560
561static bool checkArmStreamingBuiltin(Sema &S, CallExpr *TheCall,
562 const FunctionDecl *FD,
564 unsigned BuiltinID) {
566
567 // Check if the intrinsic is available in the right mode, i.e.
568 // * When compiling for SME only, the caller must be in streaming mode.
569 // * When compiling for SVE only, the caller must be in non-streaming mode.
570 // * When compiling for both SVE and SME, the caller can be in either mode.
572 llvm::StringMap<bool> CallerFeatureMapWithoutSVE;
573 S.Context.getFunctionFeatureMap(CallerFeatureMapWithoutSVE, FD);
574 CallerFeatureMapWithoutSVE["sve"] = false;
575
576 // Avoid emitting diagnostics for a function that can never compile.
577 if (FnType == SemaARM::ArmStreaming && !CallerFeatureMapWithoutSVE["sme"])
578 return false;
579
580 llvm::StringMap<bool> CallerFeatureMapWithoutSME;
581 S.Context.getFunctionFeatureMap(CallerFeatureMapWithoutSME, FD);
582 CallerFeatureMapWithoutSME["sme"] = false;
583
584 // We know the builtin requires either some combination of SVE flags, or
585 // some combination of SME flags, but we need to figure out which part
586 // of the required features is satisfied by the target features.
587 //
588 // For a builtin with target guard 'sve2p1|sme2', if we compile with
589 // '+sve2p1,+sme', then we know that it satisfies the 'sve2p1' part if we
590 // evaluate the features for '+sve2p1,+sme,+nosme'.
591 //
592 // Similarly, if we compile with '+sve2,+sme2', then we know it satisfies
593 // the 'sme2' part if we evaluate the features for '+sve2,+sme2,+nosve'.
594 StringRef BuiltinTargetGuards(
596 bool SatisfiesSVE = Builtin::evaluateRequiredTargetFeatures(
597 BuiltinTargetGuards, CallerFeatureMapWithoutSME);
598 bool SatisfiesSME = Builtin::evaluateRequiredTargetFeatures(
599 BuiltinTargetGuards, CallerFeatureMapWithoutSVE);
600
601 if ((SatisfiesSVE && SatisfiesSME) ||
602 (SatisfiesSVE && FnType == SemaARM::ArmStreamingCompatible))
603 return false;
604 else if (SatisfiesSVE)
606 else if (SatisfiesSME)
608 else
609 // This should be diagnosed by CodeGen
610 return false;
611 }
612
613 if (FnType != SemaARM::ArmNonStreaming &&
615 S.Diag(TheCall->getBeginLoc(), diag::err_attribute_arm_sm_incompat_builtin)
616 << TheCall->getSourceRange() << "non-streaming";
617 else if (FnType != SemaARM::ArmStreaming &&
619 S.Diag(TheCall->getBeginLoc(), diag::err_attribute_arm_sm_incompat_builtin)
620 << TheCall->getSourceRange() << "streaming";
621 else
622 return false;
623
624 return true;
625}
626
627static ArmSMEState getSMEState(unsigned BuiltinID) {
628 switch (BuiltinID) {
629 default:
630 return ArmNoState;
631#define GET_SME_BUILTIN_GET_STATE
632#include "clang/Basic/arm_sme_builtins_za_state.inc"
633#undef GET_SME_BUILTIN_GET_STATE
634 }
635}
636
638 CallExpr *TheCall) {
639 if (const FunctionDecl *FD =
640 SemaRef.getCurFunctionDecl(/*AllowLambda=*/true)) {
641 std::optional<ArmStreamingType> BuiltinType;
642
643 switch (BuiltinID) {
644#define GET_SME_STREAMING_ATTRS
645#include "clang/Basic/arm_sme_streaming_attrs.inc"
646#undef GET_SME_STREAMING_ATTRS
647 }
648
649 if (BuiltinType &&
650 checkArmStreamingBuiltin(SemaRef, TheCall, FD, *BuiltinType, BuiltinID))
651 return true;
652
653 if ((getSMEState(BuiltinID) & ArmZAMask) && !hasArmZAState(FD))
654 Diag(TheCall->getBeginLoc(),
655 diag::warn_attribute_arm_za_builtin_no_za_state)
656 << TheCall->getSourceRange();
657
658 if ((getSMEState(BuiltinID) & ArmZT0Mask) && !hasArmZT0State(FD))
659 Diag(TheCall->getBeginLoc(),
660 diag::warn_attribute_arm_zt0_builtin_no_zt0_state)
661 << TheCall->getSourceRange();
662 }
663
664 // Range check SME intrinsics that take immediate values.
666
667 switch (BuiltinID) {
668 default:
669 return false;
670#define GET_SME_IMMEDIATE_CHECK
671#include "clang/Basic/arm_sme_sema_rangechecks.inc"
672#undef GET_SME_IMMEDIATE_CHECK
673 }
674
675 return PerformSVEImmChecks(TheCall, ImmChecks);
676}
677
679 CallExpr *TheCall) {
680 if (const FunctionDecl *FD =
681 SemaRef.getCurFunctionDecl(/*AllowLambda=*/true)) {
682 std::optional<ArmStreamingType> BuiltinType;
683
684 switch (BuiltinID) {
685#define GET_SVE_STREAMING_ATTRS
686#include "clang/Basic/arm_sve_streaming_attrs.inc"
687#undef GET_SVE_STREAMING_ATTRS
688 }
689 if (BuiltinType &&
690 checkArmStreamingBuiltin(SemaRef, TheCall, FD, *BuiltinType, BuiltinID))
691 return true;
692 }
693 // Range check SVE intrinsics that take immediate values.
695
696 switch (BuiltinID) {
697 default:
698 return false;
699#define GET_SVE_IMMEDIATE_CHECK
700#include "clang/Basic/arm_sve_sema_rangechecks.inc"
701#undef GET_SVE_IMMEDIATE_CHECK
702 }
703
704 return PerformSVEImmChecks(TheCall, ImmChecks);
705}
706
708 unsigned BuiltinID,
709 CallExpr *TheCall) {
710 if (const FunctionDecl *FD =
711 SemaRef.getCurFunctionDecl(/*AllowLambda=*/true)) {
712
713 switch (BuiltinID) {
714 default:
715 break;
716#define GET_NEON_BUILTINS
717#define TARGET_BUILTIN(id, ...) case NEON::BI##id:
718#define BUILTIN(id, ...) case NEON::BI##id:
719#include "clang/Basic/arm_neon.inc"
721 BuiltinID))
722 return true;
723 break;
724#undef TARGET_BUILTIN
725#undef BUILTIN
726#undef GET_NEON_BUILTINS
727 }
728 }
729
730 llvm::APSInt Result;
731 uint64_t mask = 0;
732 int TV = -1;
733 int PtrArgNum = -1;
734 bool HasConstPtr = false;
735 switch (BuiltinID) {
736#define GET_NEON_OVERLOAD_CHECK
737#include "clang/Basic/arm_fp16.inc"
738#include "clang/Basic/arm_neon.inc"
739#undef GET_NEON_OVERLOAD_CHECK
740 }
741
742 // For NEON intrinsics which are overloaded on vector element type, validate
743 // the immediate which specifies which variant to emit.
744 unsigned ImmArg = TheCall->getNumArgs() - 1;
745 if (mask) {
746 if (SemaRef.BuiltinConstantArg(TheCall, ImmArg, Result))
747 return true;
748
749 TV = Result.getLimitedValue(64);
750 if ((TV > 63) || (mask & (1ULL << TV)) == 0)
751 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
752 << TheCall->getArg(ImmArg)->getSourceRange();
753 }
754
755 if (PtrArgNum >= 0) {
756 // Check that pointer arguments have the specified type.
757 Expr *Arg = TheCall->getArg(PtrArgNum);
758 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
759 Arg = ICE->getSubExpr();
761 QualType RHSTy = RHS.get()->getType();
762
763 llvm::Triple::ArchType Arch = TI.getTriple().getArch();
764 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
765 Arch == llvm::Triple::aarch64_32 ||
766 Arch == llvm::Triple::aarch64_be;
767 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
769 IsPolyUnsigned, IsInt64Long);
770 if (HasConstPtr)
771 EltTy = EltTy.withConst();
772 QualType LHSTy = getASTContext().getPointerType(EltTy);
774 ConvTy = SemaRef.CheckSingleAssignmentConstraints(LHSTy, RHS);
775 if (RHS.isInvalid())
776 return true;
777 if (SemaRef.DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy,
778 RHSTy, RHS.get(),
780 return true;
781 }
782
783 // For NEON intrinsics which take an immediate value as part of the
784 // instruction, range check them here.
786 switch (BuiltinID) {
787 default:
788 return false;
789#define GET_NEON_IMMEDIATE_CHECK
790#include "clang/Basic/arm_fp16.inc"
791#include "clang/Basic/arm_neon.inc"
792#undef GET_NEON_IMMEDIATE_CHECK
793 }
794
795 return PerformNeonImmChecks(TheCall, ImmChecks, TV);
796}
797
799 CallExpr *TheCall) {
800 switch (BuiltinID) {
801 default:
802 return false;
803#include "clang/Basic/arm_mve_builtin_sema.inc"
804 }
805}
806
808 unsigned BuiltinID,
809 CallExpr *TheCall) {
810 bool Err = false;
811 switch (BuiltinID) {
812 default:
813 return false;
814#include "clang/Basic/arm_cde_builtin_sema.inc"
815 }
816
817 if (Err)
818 return true;
819
820 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
821}
822
824 const Expr *CoprocArg,
825 bool WantCDE) {
826 ASTContext &Context = getASTContext();
828 return false;
829
830 // We can't check the value of a dependent argument.
831 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
832 return false;
833
834 llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
835 int64_t CoprocNo = CoprocNoAP.getExtValue();
836 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
837
838 uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
839 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
840
841 if (IsCDECoproc != WantCDE)
842 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
843 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
844
845 return false;
846}
847
849 CallExpr *TheCall,
850 unsigned MaxWidth) {
851 assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
852 BuiltinID == ARM::BI__builtin_arm_ldaex ||
853 BuiltinID == ARM::BI__builtin_arm_strex ||
854 BuiltinID == ARM::BI__builtin_arm_stlex ||
855 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
856 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
857 BuiltinID == AArch64::BI__builtin_arm_strex ||
858 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
859 "unexpected ARM builtin");
860 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
861 BuiltinID == ARM::BI__builtin_arm_ldaex ||
862 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
863 BuiltinID == AArch64::BI__builtin_arm_ldaex;
864
865 ASTContext &Context = getASTContext();
866 DeclRefExpr *DRE =
867 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
868
869 // Ensure that we have the proper number of arguments.
870 if (SemaRef.checkArgCount(TheCall, IsLdrex ? 1 : 2))
871 return true;
872
873 // Inspect the pointer argument of the atomic builtin. This should always be
874 // a pointer type, whose element is an integral scalar or pointer type.
875 // Because it is a pointer type, we don't have to worry about any implicit
876 // casts here.
877 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
878 ExprResult PointerArgRes =
880 if (PointerArgRes.isInvalid())
881 return true;
882 PointerArg = PointerArgRes.get();
883
884 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
885 if (!pointerType) {
886 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
887 << PointerArg->getType() << 0 << PointerArg->getSourceRange();
888 return true;
889 }
890
891 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
892 // task is to insert the appropriate casts into the AST. First work out just
893 // what the appropriate type is.
894 QualType ValType = pointerType->getPointeeType();
895 QualType AddrType = ValType.getUnqualifiedType().withVolatile();
896 if (IsLdrex)
897 AddrType.addConst();
898
899 // Issue a warning if the cast is dodgy.
900 CastKind CastNeeded = CK_NoOp;
901 if (!AddrType.isAtLeastAsQualifiedAs(ValType, getASTContext())) {
902 CastNeeded = CK_BitCast;
903 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
904 << PointerArg->getType() << Context.getPointerType(AddrType)
905 << AssignmentAction::Passing << PointerArg->getSourceRange();
906 }
907
908 // Finally, do the cast and replace the argument with the corrected version.
909 AddrType = Context.getPointerType(AddrType);
910 PointerArgRes = SemaRef.ImpCastExprToType(PointerArg, AddrType, CastNeeded);
911 if (PointerArgRes.isInvalid())
912 return true;
913 PointerArg = PointerArgRes.get();
914
915 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
916
917 // In general, we allow ints, floats and pointers to be loaded and stored.
918 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
919 !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
920 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
921 << PointerArg->getType() << 0 << PointerArg->getSourceRange();
922 return true;
923 }
924
925 // But ARM doesn't have instructions to deal with 128-bit versions.
926 if (Context.getTypeSize(ValType) > MaxWidth) {
927 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
928 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
929 << PointerArg->getType() << PointerArg->getSourceRange();
930 return true;
931 }
932
933 switch (ValType.getObjCLifetime()) {
936 // okay
937 break;
938
942 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
943 << ValType << PointerArg->getSourceRange();
944 return true;
945 }
946
947 if (IsLdrex) {
948 TheCall->setType(ValType);
949 return false;
950 }
951
952 // Initialize the argument to be stored.
953 ExprResult ValArg = TheCall->getArg(0);
955 Context, ValType, /*consume*/ false);
956 ValArg = SemaRef.PerformCopyInitialization(Entity, SourceLocation(), ValArg);
957 if (ValArg.isInvalid())
958 return true;
959 TheCall->setArg(0, ValArg.get());
960
961 // __builtin_arm_strex always returns an int. It's marked as such in the .def,
962 // but the custom checker bypasses all default analysis.
963 TheCall->setType(Context.IntTy);
964 return false;
965}
966
968 unsigned BuiltinID,
969 CallExpr *TheCall) {
970 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
971 BuiltinID == ARM::BI__builtin_arm_ldaex ||
972 BuiltinID == ARM::BI__builtin_arm_strex ||
973 BuiltinID == ARM::BI__builtin_arm_stlex) {
974 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
975 }
976
977 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
978 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, 1) ||
979 SemaRef.BuiltinConstantArgRange(TheCall, 2, 0, 1);
980 }
981
982 if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
983 BuiltinID == ARM::BI__builtin_arm_wsr64)
984 return BuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
985
986 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
987 BuiltinID == ARM::BI__builtin_arm_rsrp ||
988 BuiltinID == ARM::BI__builtin_arm_wsr ||
989 BuiltinID == ARM::BI__builtin_arm_wsrp)
990 return BuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
991
992 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
993 return true;
994 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
995 return true;
996 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
997 return true;
998
999 // For intrinsics which take an immediate value as part of the instruction,
1000 // range check them here.
1001 // FIXME: VFP Intrinsics should error if VFP not present.
1002 switch (BuiltinID) {
1003 default:
1004 return false;
1005 case ARM::BI__builtin_arm_ssat:
1006 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 1, 32);
1007 case ARM::BI__builtin_arm_usat:
1008 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, 31);
1009 case ARM::BI__builtin_arm_ssat16:
1010 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 1, 16);
1011 case ARM::BI__builtin_arm_usat16:
1012 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, 15);
1013 case ARM::BI__builtin_arm_vcvtr_f:
1014 case ARM::BI__builtin_arm_vcvtr_d:
1015 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, 1);
1016 case ARM::BI__builtin_arm_dmb:
1017 case ARM::BI__builtin_arm_dsb:
1018 case ARM::BI__builtin_arm_isb:
1019 case ARM::BI__builtin_arm_dbg:
1020 return SemaRef.BuiltinConstantArgRange(TheCall, 0, 0, 15);
1021 case ARM::BI__builtin_arm_cdp:
1022 case ARM::BI__builtin_arm_cdp2:
1023 case ARM::BI__builtin_arm_mcr:
1024 case ARM::BI__builtin_arm_mcr2:
1025 case ARM::BI__builtin_arm_mrc:
1026 case ARM::BI__builtin_arm_mrc2:
1027 case ARM::BI__builtin_arm_mcrr:
1028 case ARM::BI__builtin_arm_mcrr2:
1029 case ARM::BI__builtin_arm_mrrc:
1030 case ARM::BI__builtin_arm_mrrc2:
1031 case ARM::BI__builtin_arm_ldc:
1032 case ARM::BI__builtin_arm_ldcl:
1033 case ARM::BI__builtin_arm_ldc2:
1034 case ARM::BI__builtin_arm_ldc2l:
1035 case ARM::BI__builtin_arm_stc:
1036 case ARM::BI__builtin_arm_stcl:
1037 case ARM::BI__builtin_arm_stc2:
1038 case ARM::BI__builtin_arm_stc2l:
1039 return SemaRef.BuiltinConstantArgRange(TheCall, 0, 0, 15) ||
1040 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
1041 /*WantCDE*/ false);
1042 }
1043}
1044
1046 unsigned BuiltinID,
1047 CallExpr *TheCall) {
1048 if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1049 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1050 BuiltinID == AArch64::BI__builtin_arm_strex ||
1051 BuiltinID == AArch64::BI__builtin_arm_stlex) {
1052 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
1053 }
1054
1055 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
1056 return SemaRef.BuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1057 SemaRef.BuiltinConstantArgRange(TheCall, 2, 0, 3) ||
1058 SemaRef.BuiltinConstantArgRange(TheCall, 3, 0, 1) ||
1059 SemaRef.BuiltinConstantArgRange(TheCall, 4, 0, 1);
1060 }
1061
1062 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
1063 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
1064 BuiltinID == AArch64::BI__builtin_arm_rsr128 ||
1065 BuiltinID == AArch64::BI__builtin_arm_wsr128)
1066 return BuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1067
1068 // Memory Tagging Extensions (MTE) Intrinsics
1069 if (BuiltinID == AArch64::BI__builtin_arm_irg ||
1070 BuiltinID == AArch64::BI__builtin_arm_addg ||
1071 BuiltinID == AArch64::BI__builtin_arm_gmi ||
1072 BuiltinID == AArch64::BI__builtin_arm_ldg ||
1073 BuiltinID == AArch64::BI__builtin_arm_stg ||
1074 BuiltinID == AArch64::BI__builtin_arm_subp) {
1075 return BuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
1076 }
1077
1078 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
1079 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
1080 BuiltinID == AArch64::BI__builtin_arm_wsr ||
1081 BuiltinID == AArch64::BI__builtin_arm_wsrp)
1082 return BuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1083
1084 // Only check the valid encoding range. Any constant in this range would be
1085 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
1086 // an exception for incorrect registers. This matches MSVC behavior.
1087 if (BuiltinID == AArch64::BI_ReadStatusReg ||
1088 BuiltinID == AArch64::BI_WriteStatusReg)
1089 return SemaRef.BuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
1090
1091 if (BuiltinID == AArch64::BI__getReg)
1092 return SemaRef.BuiltinConstantArgRange(TheCall, 0, 0, 31);
1093
1094 if (BuiltinID == AArch64::BI__break)
1095 return SemaRef.BuiltinConstantArgRange(TheCall, 0, 0, 0xffff);
1096
1097 if (BuiltinID == AArch64::BI__hlt)
1098 return SemaRef.BuiltinConstantArgRange(TheCall, 0, 0, 0xffff);
1099
1100 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
1101 return true;
1102
1103 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
1104 return true;
1105
1106 if (CheckSMEBuiltinFunctionCall(BuiltinID, TheCall))
1107 return true;
1108
1109 // For intrinsics which take an immediate value as part of the instruction,
1110 // range check them here.
1111 unsigned i = 0, l = 0, u = 0;
1112 switch (BuiltinID) {
1113 default: return false;
1114 case AArch64::BI__builtin_arm_dmb:
1115 case AArch64::BI__builtin_arm_dsb:
1116 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
1117 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
1118 }
1119
1120 return SemaRef.BuiltinConstantArgRange(TheCall, i, l, u + l);
1121}
1122
1123namespace {
1124struct IntrinToName {
1125 uint32_t Id;
1126 int32_t FullName;
1127 int32_t ShortName;
1128};
1129} // unnamed namespace
1130
1131static bool BuiltinAliasValid(unsigned BuiltinID, StringRef AliasName,
1133 const char *IntrinNames) {
1134 AliasName.consume_front("__arm_");
1135 const IntrinToName *It =
1136 llvm::lower_bound(Map, BuiltinID, [](const IntrinToName &L, unsigned Id) {
1137 return L.Id < Id;
1138 });
1139 if (It == Map.end() || It->Id != BuiltinID)
1140 return false;
1141 StringRef FullName(&IntrinNames[It->FullName]);
1142 if (AliasName == FullName)
1143 return true;
1144 if (It->ShortName == -1)
1145 return false;
1146 StringRef ShortName(&IntrinNames[It->ShortName]);
1147 return AliasName == ShortName;
1148}
1149
1150bool SemaARM::MveAliasValid(unsigned BuiltinID, StringRef AliasName) {
1151#include "clang/Basic/arm_mve_builtin_aliases.inc"
1152 // The included file defines:
1153 // - ArrayRef<IntrinToName> Map
1154 // - const char IntrinNames[]
1155 return BuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
1156}
1157
1158bool SemaARM::CdeAliasValid(unsigned BuiltinID, StringRef AliasName) {
1159#include "clang/Basic/arm_cde_builtin_aliases.inc"
1160 return BuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
1161}
1162
1163bool SemaARM::SveAliasValid(unsigned BuiltinID, StringRef AliasName) {
1164 if (getASTContext().BuiltinInfo.isAuxBuiltinID(BuiltinID))
1165 BuiltinID = getASTContext().BuiltinInfo.getAuxBuiltinID(BuiltinID);
1166 return BuiltinID >= AArch64::FirstSVEBuiltin &&
1167 BuiltinID <= AArch64::LastSVEBuiltin;
1168}
1169
1170bool SemaARM::SmeAliasValid(unsigned BuiltinID, StringRef AliasName) {
1171 if (getASTContext().BuiltinInfo.isAuxBuiltinID(BuiltinID))
1172 BuiltinID = getASTContext().BuiltinInfo.getAuxBuiltinID(BuiltinID);
1173 return BuiltinID >= AArch64::FirstSMEBuiltin &&
1174 BuiltinID <= AArch64::LastSMEBuiltin;
1175}
1176
1178 ASTContext &Context = getASTContext();
1179 if (!AL.isArgIdent(0)) {
1180 Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1181 << AL << 1 << AANT_ArgumentIdentifier;
1182 return;
1183 }
1184
1185 IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
1186 unsigned BuiltinID = Ident->getBuiltinID();
1187 StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
1188
1189 bool IsAArch64 = Context.getTargetInfo().getTriple().isAArch64();
1190 if ((IsAArch64 && !SveAliasValid(BuiltinID, AliasName) &&
1191 !SmeAliasValid(BuiltinID, AliasName)) ||
1192 (!IsAArch64 && !MveAliasValid(BuiltinID, AliasName) &&
1193 !CdeAliasValid(BuiltinID, AliasName))) {
1194 Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias);
1195 return;
1196 }
1197
1198 D->addAttr(::new (Context) ArmBuiltinAliasAttr(Context, AL, Ident));
1199}
1200
1202 Sema &S, const ParsedAttr &AL, const FunctionProtoType *FPT,
1203 FunctionType::ArmStateValue CurrentState, StringRef StateName) {
1204 auto CheckForIncompatibleAttr =
1205 [&](FunctionType::ArmStateValue IncompatibleState,
1206 StringRef IncompatibleStateName) {
1207 if (CurrentState == IncompatibleState) {
1208 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1209 << (std::string("'__arm_new(\"") + StateName.str() + "\")'")
1210 << (std::string("'") + IncompatibleStateName.str() + "(\"" +
1211 StateName.str() + "\")'")
1212 << true;
1213 AL.setInvalid();
1214 }
1215 };
1216
1217 CheckForIncompatibleAttr(FunctionType::ARM_In, "__arm_in");
1218 CheckForIncompatibleAttr(FunctionType::ARM_Out, "__arm_out");
1219 CheckForIncompatibleAttr(FunctionType::ARM_InOut, "__arm_inout");
1220 CheckForIncompatibleAttr(FunctionType::ARM_Preserves, "__arm_preserves");
1221 return AL.isInvalid();
1222}
1223
1225 if (!AL.getNumArgs()) {
1226 Diag(AL.getLoc(), diag::err_missing_arm_state) << AL;
1227 AL.setInvalid();
1228 return;
1229 }
1230
1231 std::vector<StringRef> NewState;
1232 if (const auto *ExistingAttr = D->getAttr<ArmNewAttr>()) {
1233 for (StringRef S : ExistingAttr->newArgs())
1234 NewState.push_back(S);
1235 }
1236
1237 bool HasZA = false;
1238 bool HasZT0 = false;
1239 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
1240 StringRef StateName;
1241 SourceLocation LiteralLoc;
1242 if (!SemaRef.checkStringLiteralArgumentAttr(AL, I, StateName, &LiteralLoc))
1243 return;
1244
1245 if (StateName == "za")
1246 HasZA = true;
1247 else if (StateName == "zt0")
1248 HasZT0 = true;
1249 else {
1250 Diag(LiteralLoc, diag::err_unknown_arm_state) << StateName;
1251 AL.setInvalid();
1252 return;
1253 }
1254
1255 if (!llvm::is_contained(NewState, StateName)) // Avoid adding duplicates.
1256 NewState.push_back(StateName);
1257 }
1258
1259 if (auto *FPT = dyn_cast<FunctionProtoType>(D->getFunctionType())) {
1261 FunctionType::getArmZAState(FPT->getAArch64SMEAttributes());
1262 if (HasZA && ZAState != FunctionType::ARM_None &&
1263 checkNewAttrMutualExclusion(SemaRef, AL, FPT, ZAState, "za"))
1264 return;
1266 FunctionType::getArmZT0State(FPT->getAArch64SMEAttributes());
1267 if (HasZT0 && ZT0State != FunctionType::ARM_None &&
1268 checkNewAttrMutualExclusion(SemaRef, AL, FPT, ZT0State, "zt0"))
1269 return;
1270 }
1271
1272 D->dropAttr<ArmNewAttr>();
1273 D->addAttr(::new (getASTContext()) ArmNewAttr(
1274 getASTContext(), AL, NewState.data(), NewState.size()));
1275}
1276
1278 if (getLangOpts().CPlusPlus && !D->getDeclContext()->isExternCContext()) {
1279 Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL;
1280 return;
1281 }
1282
1283 const auto *FD = cast<FunctionDecl>(D);
1284 if (!FD->isExternallyVisible()) {
1285 Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static);
1286 return;
1287 }
1288
1289 D->addAttr(::new (getASTContext()) CmseNSEntryAttr(getASTContext(), AL));
1290}
1291
1293 // Check the attribute arguments.
1294 if (AL.getNumArgs() > 1) {
1295 Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
1296 return;
1297 }
1298
1299 StringRef Str;
1300 SourceLocation ArgLoc;
1301
1302 if (AL.getNumArgs() == 0)
1303 Str = "";
1304 else if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
1305 return;
1306
1307 ARMInterruptAttr::InterruptType Kind;
1308 if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
1309 Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
1310 << AL << Str << ArgLoc;
1311 return;
1312 }
1313
1314 const TargetInfo &TI = getASTContext().getTargetInfo();
1315 if (TI.hasFeature("vfp"))
1316 Diag(D->getLocation(), diag::warn_arm_interrupt_vfp_clobber);
1317
1318 D->addAttr(::new (getASTContext())
1319 ARMInterruptAttr(getASTContext(), AL, Kind));
1320}
1321
1322// Check if the function definition uses any AArch64 SME features without
1323// having the '+sme' feature enabled and warn user if sme locally streaming
1324// function returns or uses arguments with VL-based types.
1326 const auto *Attr = FD->getAttr<ArmNewAttr>();
1327 bool UsesSM = FD->hasAttr<ArmLocallyStreamingAttr>();
1328 bool UsesZA = Attr && Attr->isNewZA();
1329 bool UsesZT0 = Attr && Attr->isNewZT0();
1330
1331 if (UsesZA || UsesZT0) {
1332 if (const auto *FPT = FD->getType()->getAs<FunctionProtoType>()) {
1333 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1335 Diag(FD->getLocation(), diag::err_sme_unsupported_agnostic_new);
1336 }
1337 }
1338
1339 if (FD->hasAttr<ArmLocallyStreamingAttr>()) {
1341 Diag(FD->getLocation(),
1342 diag::warn_sme_locally_streaming_has_vl_args_returns)
1343 << /*IsArg=*/false;
1344 if (llvm::any_of(FD->parameters(), [](ParmVarDecl *P) {
1345 return P->getOriginalType()->isSizelessVectorType();
1346 }))
1347 Diag(FD->getLocation(),
1348 diag::warn_sme_locally_streaming_has_vl_args_returns)
1349 << /*IsArg=*/true;
1350 }
1351 if (const auto *FPT = FD->getType()->getAs<FunctionProtoType>()) {
1352 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1358 }
1359
1360 ASTContext &Context = getASTContext();
1361 if (UsesSM || UsesZA) {
1362 llvm::StringMap<bool> FeatureMap;
1363 Context.getFunctionFeatureMap(FeatureMap, FD);
1364 if (!FeatureMap.contains("sme")) {
1365 if (UsesSM)
1366 Diag(FD->getLocation(),
1367 diag::err_sme_definition_using_sm_in_non_sme_target);
1368 else
1369 Diag(FD->getLocation(),
1370 diag::err_sme_definition_using_za_in_non_sme_target);
1371 }
1372 }
1373 if (UsesZT0) {
1374 llvm::StringMap<bool> FeatureMap;
1375 Context.getFunctionFeatureMap(FeatureMap, FD);
1376 if (!FeatureMap.contains("sme2")) {
1377 Diag(FD->getLocation(),
1378 diag::err_sme_definition_using_zt0_in_non_sme2_target);
1379 }
1380 }
1381}
1382
1383} // namespace clang
StringRef P
static constexpr Builtin::Info BuiltinInfo[]
Definition: Builtins.cpp:32
enum clang::sema::@1704::IndirectLocalPathEntry::EntryKind Kind
const Decl * D
Expr * E
uint32_t Id
Definition: SemaARM.cpp:1125
int32_t ShortName
Definition: SemaARM.cpp:1127
int32_t FullName
Definition: SemaARM.cpp:1126
This file declares semantic analysis functions specific to ARM.
Enumerates target-specific builtins in their own namespaces within namespace clang.
__device__ int
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
CanQualType LongTy
Definition: ASTContext.h:1169
CanQualType FloatTy
Definition: ASTContext.h:1172
CanQualType DoubleTy
Definition: ASTContext.h:1172
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
Builtin::Context & BuiltinInfo
Definition: ASTContext.h:682
CanQualType UnsignedLongTy
Definition: ASTContext.h:1170
CanQualType IntTy
Definition: ASTContext.h:1169
CanQualType SignedCharTy
Definition: ASTContext.h:1169
CanQualType UnsignedCharTy
Definition: ASTContext.h:1170
CanQualType UnsignedIntTy
Definition: ASTContext.h:1170
CanQualType UnsignedLongLongTy
Definition: ASTContext.h:1171
CanQualType UnsignedShortTy
Definition: ASTContext.h:1170
CanQualType ShortTy
Definition: ASTContext.h:1169
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:799
CanQualType BFloat16Ty
Definition: ASTContext.h:1185
void getFunctionFeatureMap(llvm::StringMap< bool > &FeatureMap, const FunctionDecl *) const
CanQualType LongLongTy
Definition: ASTContext.h:1169
CanQualType HalfTy
Definition: ASTContext.h:1184
PtrTy get() const
Definition: Ownership.h:170
bool isInvalid() const
Definition: Ownership.h:166
Attr - This represents one attribute.
Definition: Attr.h:43
SourceLocation getLoc() const
This class is used for builtin types like 'int'.
Definition: Type.h:3035
unsigned getAuxBuiltinID(unsigned ID) const
Return real builtin ID (i.e.
Definition: Builtins.h:269
const char * getRequiredFeatures(unsigned ID) const
Definition: Builtins.h:256
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2874
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:3068
void setArg(unsigned Arg, Expr *ArgExpr)
setArg - Set the specified argument.
Definition: Expr.h:3081
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1644
Expr * getCallee()
Definition: Expr.h:3024
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:3055
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1265
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:550
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
T * getAttr() const
Definition: DeclBase.h:576
SourceLocation getLocation() const
Definition: DeclBase.h:442
bool hasAttr() const
Definition: DeclBase.h:580
This represents one expression.
Definition: Expr.h:110
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:3101
void setType(QualType t)
Definition: Expr.h:143
bool isValueDependent() const
Determines whether the value of this expression depends on.
Definition: Expr.h:175
bool isTypeDependent() const
Determines whether the type of this expression depends on.
Definition: Expr.h:192
Expr * IgnoreParenImpCasts() LLVM_READONLY
Skip past any parentheses and implicit casts which might surround this expression until reaching a fi...
Definition: Expr.cpp:3096
@ NPC_ValueDependentIsNotNull
Specifies that a value-dependent expression should be considered to never be a null pointer constant.
Definition: Expr.h:830
std::optional< llvm::APSInt > getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc=nullptr) const
isIntegerConstantExpr - Return the value if this expression is a valid integer constant expression.
QualType getType() const
Definition: Expr.h:142
Represents a function declaration or definition.
Definition: Decl.h:1935
QualType getReturnType() const
Definition: Decl.h:2720
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2649
Represents a prototype with parameter type info, e.g.
Definition: Type.h:5108
static ArmStateValue getArmZT0State(unsigned AttrBits)
Definition: Type.h:4619
static ArmStateValue getArmZAState(unsigned AttrBits)
Definition: Type.h:4615
@ SME_PStateSMEnabledMask
Definition: Type.h:4588
@ SME_PStateSMCompatibleMask
Definition: Type.h:4589
@ SME_AgnosticZAStateMask
Definition: Type.h:4599
One of these records is kept for each identifier that is lexed.
unsigned getBuiltinID() const
Return a value indicating whether this is a builtin function.
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3724
Describes an entity that is being initialized.
static InitializedEntity InitializeParameter(ASTContext &Context, ParmVarDecl *Parm)
Create the initialization entity for a parameter.
Flags to identify the types for overloaded Neon builtins.
bool isUnsigned() const
unsigned getEltSizeInBits() const
EltType getEltType() const
Represents a parameter to a function.
Definition: Decl.h:1725
ParsedAttr - Represents a syntactic attribute.
Definition: ParsedAttr.h:129
IdentifierLoc * getArgAsIdent(unsigned Arg) const
Definition: ParsedAttr.h:404
void setInvalid(bool b=true) const
Definition: ParsedAttr.h:360
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this attribute.
Definition: ParsedAttr.h:386
bool isArgIdent(unsigned Arg) const
Definition: ParsedAttr.h:400
bool isInvalid() const
Definition: ParsedAttr.h:359
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:3199
A (possibly-)qualified type.
Definition: Type.h:929
QualType withConst() const
Definition: Type.h:1154
void addConst()
Add the const type qualifier to this QualType.
Definition: Type.h:1151
QualType withVolatile() const
Definition: Type.h:1162
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1433
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:8031
const Type * getTypePtrOrNull() const
Definition: Type.h:7941
bool isAtLeastAsQualifiedAs(QualType Other, const ASTContext &Ctx) const
Determine whether this type is at least as qualified as the other given type, requiring exact equalit...
Definition: Type.h:8120
@ OCL_Strong
Assigning into this object requires the old value to be released and the new value to be retained.
Definition: Type.h:354
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition: Type.h:347
@ OCL_None
There is no lifetime qualification on this type.
Definition: Type.h:343
@ OCL_Weak
Reading or writing from this object requires a barrier call.
Definition: Type.h:357
@ OCL_Autoreleasing
Assigning into this object requires a lifetime extension.
Definition: Type.h:360
void CheckSMEFunctionDefAttributes(const FunctionDecl *FD)
Definition: SemaARM.cpp:1325
bool CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:967
bool CheckSMEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:637
bool CheckARMCoprocessorImmediate(const TargetInfo &TI, const Expr *CoprocArg, bool WantCDE)
Definition: SemaARM.cpp:823
bool CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:678
bool CheckNeonBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:707
bool CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:807
bool PerformNeonImmChecks(CallExpr *TheCall, SmallVectorImpl< std::tuple< int, int, int, int > > &ImmChecks, int OverloadType=-1)
Definition: SemaARM.cpp:513
bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:798
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition: SemaARM.cpp:1292
bool PerformSVEImmChecks(CallExpr *TheCall, SmallVectorImpl< std::tuple< int, int, int > > &ImmChecks)
Definition: SemaARM.cpp:532
void handleBuiltinAliasAttr(Decl *D, const ParsedAttr &AL)
Definition: SemaARM.cpp:1177
@ ArmStreaming
Intrinsic is only available in normal mode.
Definition: SemaARM.h:37
@ ArmNonStreaming
Definition: SemaARM.h:36
@ VerifyRuntimeMode
Intrinsic is available both in normal and Streaming-SVE mode.
Definition: SemaARM.h:40
@ ArmStreamingCompatible
Intrinsic is only available in Streaming-SVE mode.
Definition: SemaARM.h:38
void handleNewAttr(Decl *D, const ParsedAttr &AL)
Definition: SemaARM.cpp:1224
bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, unsigned MaxWidth)
Definition: SemaARM.cpp:848
bool SveAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition: SemaARM.cpp:1163
bool CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, CallExpr *TheCall)
Definition: SemaARM.cpp:1045
bool MveAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition: SemaARM.cpp:1150
bool BuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall)
BuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions.
Definition: SemaARM.cpp:26
void handleCmseNSEntryAttr(Decl *D, const ParsedAttr &AL)
Definition: SemaARM.cpp:1277
bool CheckImmediateArg(CallExpr *TheCall, unsigned CheckTy, unsigned ArgIdx, unsigned EltBitWidth, unsigned VecBitWidth)
Definition: SemaARM.cpp:375
bool BuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, int ArgNum, unsigned ExpectedFieldNum, bool AllowName)
BuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr TheCall is an ARM/AArch64 specia...
Definition: SemaARM.cpp:188
bool SmeAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition: SemaARM.cpp:1170
bool CdeAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition: SemaARM.cpp:1158
SemaARM(Sema &S)
Definition: SemaARM.cpp:23
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID, bool DeferHint=false)
Emit a diagnostic.
Definition: SemaBase.cpp:60
ASTContext & getASTContext() const
Definition: SemaBase.cpp:9
Sema & SemaRef
Definition: SemaBase.h:40
const LangOptions & getLangOpts() const
Definition: SemaBase.cpp:11
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:466
bool BuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, unsigned Multiple)
BuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr TheCall is a constant expr...
FunctionDecl * getCurFunctionDecl(bool AllowLambda=false) const
Returns a pointer to the innermost enclosing function, or nullptr if the current context is not insid...
Definition: Sema.cpp:1570
ASTContext & Context
Definition: Sema.h:911
ExprResult DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose=true)
Definition: SemaExpr.cpp:752
ExprResult ImpCastExprToType(Expr *E, QualType Type, CastKind CK, ExprValueKind VK=VK_PRValue, const CXXCastPath *BasePath=nullptr, CheckedConversionKind CCK=CheckedConversionKind::Implicit)
ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
Definition: Sema.cpp:692
AssignConvertType CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS, bool Diagnose=true, bool DiagnoseCFAudited=false, bool ConvertRHS=true)
Check assignment constraints for an assignment of RHS to LHSType.
Definition: SemaExpr.cpp:9647
ExprResult DefaultLvalueConversion(Expr *E)
Definition: SemaExpr.cpp:640
AssignConvertType
AssignConvertType - All of the 'assignment' semantic checks return this enum to indicate whether the ...
Definition: Sema.h:7594
bool BuiltinConstantArg(CallExpr *TheCall, int ArgNum, llvm::APSInt &Result)
BuiltinConstantArg - Handle a check if argument ArgNum of CallExpr TheCall is a constant expression.
bool isConstantEvaluatedContext() const
Definition: Sema.h:2153
bool checkArgCount(CallExpr *Call, unsigned DesiredArgCount)
Checks that a call expression's argument count is the desired number.
ExprResult PerformCopyInitialization(const InitializedEntity &Entity, SourceLocation EqualLoc, ExprResult Init, bool TopLevelOfInitList=false, bool AllowExplicit=false)
Definition: SemaInit.cpp:9773
bool DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc, QualType DstType, QualType SrcType, Expr *SrcExpr, AssignmentAction Action, bool *Complained=nullptr)
DiagnoseAssignmentResult - Emit a diagnostic, if required, for the assignment conversion type specifi...
Definition: SemaExpr.cpp:16843
bool BuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low, int High, bool RangeIsError=true)
BuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr TheCall is a constant express...
bool checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI, const Expr *E, StringRef &Str, SourceLocation *ArgLocation=nullptr)
Check if the argument E is a ASCII string literal.
Encodes a location in the source.
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:334
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:346
Exposes information about the current target.
Definition: TargetInfo.h:220
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:1263
IntType getInt64Type() const
Definition: TargetInfo.h:411
uint32_t getARMCDECoprocMask() const
For ARM targets returns a mask defining which coprocessors are configured as Custom Datapath.
Definition: TargetInfo.h:1059
virtual bool hasFeature(StringRef Feature) const
Determine whether the given target has the given feature.
Definition: TargetInfo.h:1494
The base class of the type hierarchy.
Definition: Type.h:1828
bool isBlockPointerType() const
Definition: Type.h:8206
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:8560
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:738
bool isFloatingType() const
Definition: Type.cpp:2283
bool isAnyPointerType() const
Definition: Type.h:8200
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8741
bool isSizelessVectorType() const
Returns true for all scalable vector types.
Definition: Type.cpp:2513
QualType getType() const
Definition: Decl.h:682
Defines the clang::TargetInfo interface.
bool evaluateRequiredTargetFeatures(llvm::StringRef RequiredFatures, const llvm::StringMap< bool > &TargetFetureMap)
Returns true if the required target features of a builtin function are enabled.
const AstTypeMatcher< PointerType > pointerType
Matches pointer types, but does not match Objective-C object pointer types.
The JSON file list parser is used to communicate input to InstallAPI.
@ CPlusPlus
Definition: LangStandard.h:55
static bool BuiltinAliasValid(unsigned BuiltinID, StringRef AliasName, ArrayRef< IntrinToName > Map, const char *IntrinNames)
Definition: SemaARM.cpp:1131
static ArmSMEState getSMEState(unsigned BuiltinID)
Definition: SemaARM.cpp:627
static bool checkArmStreamingBuiltin(Sema &S, CallExpr *TheCall, const FunctionDecl *FD, SemaARM::ArmStreamingType BuiltinType, unsigned BuiltinID)
Definition: SemaARM.cpp:561
ArmSMEState
Definition: SemaARM.cpp:361
@ ArmInOutZA
Definition: SemaARM.cpp:366
@ ArmZT0Mask
Definition: SemaARM.cpp:372
@ ArmInOutZT0
Definition: SemaARM.cpp:371
@ ArmInZA
Definition: SemaARM.cpp:364
@ ArmInZT0
Definition: SemaARM.cpp:369
@ ArmZAMask
Definition: SemaARM.cpp:367
@ ArmOutZA
Definition: SemaARM.cpp:365
@ ArmOutZT0
Definition: SemaARM.cpp:370
@ ArmNoState
Definition: SemaARM.cpp:362
SemaARM::ArmStreamingType getArmStreamingFnType(const FunctionDecl *FD)
Definition: SemaARM.cpp:545
@ AANT_ArgumentIdentifier
Definition: ParsedAttr.h:1081
@ Result
The result type of a method or function.
bool hasArmZT0State(const FunctionDecl *FD)
Returns whether the given FunctionDecl has Arm ZT0 state.
Definition: Decl.cpp:5859
CastKind
CastKind - The kind of operation required for a conversion.
static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, bool IsPolyUnsigned, bool IsInt64Long)
getNeonEltType - Return the QualType corresponding to the elements of the vector type specified by th...
Definition: SemaARM.cpp:321
static bool checkNewAttrMutualExclusion(Sema &S, const ParsedAttr &AL, const FunctionProtoType *FPT, FunctionType::ArmStateValue CurrentState, StringRef StateName)
Definition: SemaARM.cpp:1201
bool hasArmZAState(const FunctionDecl *FD)
Returns whether the given FunctionDecl has Arm ZA state.
Definition: Decl.cpp:5852
Extra information about a function prototype.
Definition: Type.h:5193
IdentifierInfo * Ident
Definition: ParsedAttr.h:105