1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
// Copyright 2020 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/cpu_affinity_posix.h"
#include <sched.h>
#include "base/cpu.h"
#include "base/process/internal_linux.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
namespace base {
namespace {
const cpu_set_t& AllCores() {
static const cpu_set_t kAllCores = []() {
cpu_set_t set;
CPU_ZERO(&set);
const std::vector<CPU::CoreType>& core_types = CPU::GetGuessedCoreTypes();
if (core_types.empty()) {
memset(&set, 0xff, sizeof(set));
} else {
for (size_t index = 0; index < core_types.size(); index++)
CPU_SET(index, &set);
}
return set;
}();
return kAllCores;
}
const cpu_set_t& LittleCores() {
static const cpu_set_t kLittleCores = []() {
const std::vector<CPU::CoreType>& core_types = CPU::GetGuessedCoreTypes();
if (core_types.empty())
return AllCores();
cpu_set_t set;
CPU_ZERO(&set);
for (size_t core_index = 0; core_index < core_types.size(); core_index++) {
switch (core_types[core_index]) {
case CPU::CoreType::kUnknown:
case CPU::CoreType::kOther:
case CPU::CoreType::kSymmetric:
// In the presence of an unknown core type or symmetric architecture,
// fall back to allowing all cores.
return AllCores();
case CPU::CoreType::kBigLittle_Little:
case CPU::CoreType::kBigLittleBigger_Little:
CPU_SET(core_index, &set);
break;
case CPU::CoreType::kBigLittle_Big:
case CPU::CoreType::kBigLittleBigger_Big:
case CPU::CoreType::kBigLittleBigger_Bigger:
break;
}
}
return set;
}();
return kLittleCores;
}
const cpu_set_t& BigCores() {
static const cpu_set_t kBigCores = []() {
const std::vector<CPU::CoreType>& core_types = CPU::GetGuessedCoreTypes();
if (core_types.empty())
return AllCores();
cpu_set_t set;
CPU_ZERO(&set);
for (size_t core_index = 0; core_index < core_types.size(); core_index++) {
switch (core_types[core_index]) {
case CPU::CoreType::kUnknown:
case CPU::CoreType::kOther:
case CPU::CoreType::kSymmetric:
// In the presence of an unknown core type or symmetric architecture,
// fall back to allowing all cores.
return AllCores();
case CPU::CoreType::kBigLittle_Little:
case CPU::CoreType::kBigLittleBigger_Little:
break;
case CPU::CoreType::kBigLittle_Big:
case CPU::CoreType::kBigLittleBigger_Big:
case CPU::CoreType::kBigLittleBigger_Bigger:
CPU_SET(core_index, &set);
break;
}
}
return set;
}();
return kBigCores;
}
const cpu_set_t& BiggerCores() {
static const cpu_set_t kBiggerCores = []() {
const std::vector<CPU::CoreType>& core_types = CPU::GetGuessedCoreTypes();
if (core_types.empty())
return AllCores();
cpu_set_t set;
CPU_ZERO(&set);
for (size_t core_index = 0; core_index < core_types.size(); core_index++) {
switch (core_types[core_index]) {
case CPU::CoreType::kUnknown:
case CPU::CoreType::kOther:
case CPU::CoreType::kSymmetric:
// In the presence of an unknown core type or symmetric architecture,
// fall back to allowing all cores.
return AllCores();
case CPU::CoreType::kBigLittle_Little:
case CPU::CoreType::kBigLittleBigger_Little:
case CPU::CoreType::kBigLittle_Big:
case CPU::CoreType::kBigLittleBigger_Big:
break;
case CPU::CoreType::kBigLittleBigger_Bigger:
CPU_SET(core_index, &set);
break;
}
}
return set;
}();
return kBiggerCores;
}
} // anonymous namespace
bool HasBigCpuCores() {
static const bool kHasBigCores = []() {
const std::vector<CPU::CoreType>& core_types = CPU::GetGuessedCoreTypes();
if (core_types.empty())
return false;
for (CPU::CoreType core_type : core_types) {
switch (core_type) {
case CPU::CoreType::kUnknown:
case CPU::CoreType::kOther:
case CPU::CoreType::kSymmetric:
return false;
case CPU::CoreType::kBigLittle_Little:
case CPU::CoreType::kBigLittleBigger_Little:
case CPU::CoreType::kBigLittle_Big:
case CPU::CoreType::kBigLittleBigger_Big:
case CPU::CoreType::kBigLittleBigger_Bigger:
return true;
}
}
return false;
}();
return kHasBigCores;
}
bool HasBiggerCpuCores() {
static const bool kHasBiggerCores = []() {
const std::vector<CPU::CoreType>& core_types = CPU::GetGuessedCoreTypes();
if (core_types.empty())
return false;
for (CPU::CoreType core_type : core_types) {
switch (core_type) {
case CPU::CoreType::kUnknown:
case CPU::CoreType::kOther:
case CPU::CoreType::kSymmetric:
return false;
case CPU::CoreType::kBigLittle_Little:
case CPU::CoreType::kBigLittleBigger_Little:
case CPU::CoreType::kBigLittle_Big:
case CPU::CoreType::kBigLittleBigger_Big:
continue;
case CPU::CoreType::kBigLittleBigger_Bigger:
return true;
}
}
return false;
}();
return kHasBiggerCores;
}
bool SetThreadCpuAffinityMode(PlatformThreadId thread_id,
CpuAffinityMode affinity) {
int result = 0;
switch (affinity) {
case CpuAffinityMode::kDefault: {
const cpu_set_t& all_cores = AllCores();
result = sched_setaffinity(thread_id, sizeof(all_cores), &all_cores);
break;
}
case CpuAffinityMode::kLittleCoresOnly: {
const cpu_set_t& little_cores = LittleCores();
result =
sched_setaffinity(thread_id, sizeof(little_cores), &little_cores);
break;
}
case CpuAffinityMode::kBigCoresOnly: {
const cpu_set_t& big_cores = BigCores();
result = sched_setaffinity(thread_id, sizeof(big_cores), &big_cores);
break;
}
case CpuAffinityMode::kBiggerCoresOnly: {
const cpu_set_t& bigger_cores = BiggerCores();
result =
sched_setaffinity(thread_id, sizeof(bigger_cores), &bigger_cores);
break;
}
}
return result == 0;
}
bool SetProcessCpuAffinityMode(ProcessHandle process_handle,
CpuAffinityMode affinity) {
bool any_threads = false;
bool result = true;
internal::ForEachProcessTask(
process_handle, [&any_threads, &result, affinity](
PlatformThreadId tid, const FilePath& /*task_path*/) {
any_threads = true;
result &= SetThreadCpuAffinityMode(tid, affinity);
});
return any_threads && result;
}
absl::optional<CpuAffinityMode> CurrentThreadCpuAffinityMode() {
if (HasBigCpuCores()) {
cpu_set_t set;
sched_getaffinity(PlatformThread::CurrentId(), sizeof(set), &set);
if (CPU_EQUAL(&set, &AllCores()))
return CpuAffinityMode::kDefault;
if (CPU_EQUAL(&set, &LittleCores()))
return CpuAffinityMode::kLittleCoresOnly;
if (CPU_EQUAL(&set, &BigCores()))
return CpuAffinityMode::kBigCoresOnly;
if (CPU_EQUAL(&set, &BiggerCores()))
return CpuAffinityMode::kBiggerCoresOnly;
}
return absl::nullopt;
}
} // namespace base
|