Skip to content

Fix MOA with local solvers not supporting delete #46

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Feb 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 18 additions & 2 deletions src/MultiObjectiveAlgorithms.jl
Original file line number Diff line number Diff line change
Expand Up @@ -94,6 +94,16 @@ abstract type AbstractAlgorithm end

MOI.Utilities.map_indices(::Function, x::AbstractAlgorithm) = x

function _instantiate_with_cache(optimizer_factory)
model = MOI.instantiate(optimizer_factory)
if !MOI.supports_incremental_interface(model)
# A cache will already have been added
return model
end
cache = MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}())
return MOI.Utilities.CachingOptimizer(cache, model)
end

mutable struct Optimizer <: MOI.AbstractOptimizer
inner::MOI.AbstractOptimizer
algorithm::Union{Nothing,AbstractAlgorithm}
Expand All @@ -103,7 +113,7 @@ mutable struct Optimizer <: MOI.AbstractOptimizer

function Optimizer(optimizer_factory)
return new(
MOI.instantiate(optimizer_factory),
_instantiate_with_cache(optimizer_factory),
nothing,
nothing,
SolutionPoint[],
Expand Down Expand Up @@ -489,7 +499,8 @@ function MOI.get(model::Optimizer, attr::MOI.ObjectiveBound)
for (i, f) in enumerate(objectives)
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(f)}(), f)
MOI.optimize!(model.inner)
if MOI.get(model.inner, MOI.TerminationStatus()) == MOI.OPTIMAL
status = MOI.get(model.inner, MOI.TerminationStatus())
if _is_scalar_status_optimal(status)
ideal_point[i] = MOI.get(model.inner, MOI.ObjectiveValue())
end
end
Expand Down Expand Up @@ -523,6 +534,11 @@ function _is_scalar_status_optimal(status::MOI.TerminationStatusCode)
return status == MOI.OPTIMAL || status == MOI.LOCALLY_SOLVED
end

function _is_scalar_status_optimal(model::Optimizer)
status = MOI.get(model.inner, MOI.TerminationStatus())
return _is_scalar_status_optimal(status)
end

for file in readdir(joinpath(@__DIR__, "algorithms"))
include(joinpath(@__DIR__, "algorithms", file))
end
Expand Down
1 change: 0 additions & 1 deletion src/algorithms/Dichotomy.jl
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,6 @@ function _solve_weighted_sum(
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(f)}(), f)
MOI.optimize!(model.inner)
status = MOI.get(model.inner, MOI.TerminationStatus())
status = MOI.get(model.inner, MOI.TerminationStatus())
if !_is_scalar_status_optimal(status)
return status, nothing
end
Expand Down
2 changes: 1 addition & 1 deletion src/algorithms/DominguezRios.jl
Original file line number Diff line number Diff line change
Expand Up @@ -201,7 +201,7 @@ function optimize_multiobjective!(algorithm::DominguezRios, model::Optimizer)
new_f = t_max + ϵ * sum(w[i] * (scalars[i] - yI[i]) for i in 1:n)
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(new_f)}(), new_f)
MOI.optimize!(model.inner)
if MOI.get(model.inner, MOI.TerminationStatus()) == MOI.OPTIMAL
if _is_scalar_status_optimal(model)
X, Y = _compute_point(model, variables, model.f)
obj = MOI.get(model.inner, MOI.ObjectiveValue())
if (obj < 1) && all(yI .< B.u)
Expand Down
2 changes: 1 addition & 1 deletion src/algorithms/EpsilonConstraint.jl
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ function optimize_multiobjective!(
while true
MOI.set(model, MOI.ConstraintSet(), ci, SetType(bound))
MOI.optimize!(model.inner)
if MOI.get(model.inner, MOI.TerminationStatus()) != MOI.OPTIMAL
if !_is_scalar_status_optimal(model)
break
end
X, Y = _compute_point(model, variables, model.f)
Expand Down
4 changes: 2 additions & 2 deletions src/algorithms/KirlikSayin.jl
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ function optimize_multiobjective!(algorithm::KirlikSayin, model::Optimizer)
end
end
MOI.optimize!(model.inner)
if MOI.get(model.inner, MOI.TerminationStatus()) != MOI.OPTIMAL
if !_is_scalar_status_optimal(model)
_remove_rectangle(L, _Rectangle(_project(yI, k), uᵢ))
MOI.delete.(model, ε_constraints)
continue
Expand All @@ -169,7 +169,7 @@ function optimize_multiobjective!(algorithm::KirlikSayin, model::Optimizer)
MOI.optimize!(model.inner)
MOI.delete.(model, ε_constraints)
MOI.delete(model, zₖ_constraint)
if MOI.get(model.inner, MOI.TerminationStatus()) != MOI.OPTIMAL
if !_is_scalar_status_optimal(model)
_remove_rectangle(L, _Rectangle(_project(yI, k), uᵢ))
continue
end
Expand Down
29 changes: 29 additions & 0 deletions test/algorithms/EpsilonConstraint.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ module TestEpsilonConstraint
using Test

import HiGHS
import Ipopt
import MultiObjectiveAlgorithms as MOA

const MOI = MOA.MOI
Expand Down Expand Up @@ -289,6 +290,34 @@ function test_deprecated()
return
end

function test_quadratic()
μ = [0.05470748600000001, 0.18257110599999998]
Q = [0.00076204 0.00051972; 0.00051972 0.00546173]
N = 2
model = MOA.Optimizer(Ipopt.Optimizer)
MOI.set(model, MOA.Algorithm(), MOA.EpsilonConstraint())
MOI.set(model, MOA.SolutionLimit(), 10)
MOI.set(model, MOI.Silent(), true)
w = MOI.add_variables(model, N)
MOI.add_constraint.(model, w, MOI.GreaterThan(0.0))
MOI.add_constraint.(model, w, MOI.LessThan(1.0))
MOI.add_constraint(model, sum(1.0 * w[i] for i in 1:N), MOI.EqualTo(1.0))
var = sum(Q[i, j] * w[i] * w[j] for i in 1:N, j in 1:N)
mean = sum(-μ[i] * w[i] for i in 1:N)
f = MOI.Utilities.operate(vcat, Float64, var, mean)
MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
MOI.optimize!(model)
@test MOI.get(model, MOI.ResultCount()) == 10
for i in 1:MOI.get(model, MOI.ResultCount())
w_sol = MOI.get(model, MOI.VariablePrimal(i), w)
y = MOI.get(model, MOI.ObjectiveValue(i))
@test y ≈ [w_sol' * Q * w_sol, -μ' * w_sol]
end
@test MOI.get(model, MOI.TerminationStatus()) == MOI.OPTIMAL
return
end

end

TestEpsilonConstraint.run_tests()
1 change: 1 addition & 0 deletions test/test_model.jl
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ function test_moi_runtests()
exclude = String[
# Skipped beause of UniversalFallback in _mock_optimizer
"test_attribute_Silent",
"test_attribute_after_empty",
"test_model_copy_to_UnsupportedAttribute",
"test_model_copy_to_UnsupportedConstraint",
"test_model_supports_constraint_ScalarAffineFunction_EqualTo",
Expand Down