Ignore:
Timestamp:
Feb 13, 2015, 8:20:21 PM (11 years ago)
Author:
[email protected]
Message:

Add a DFG node for the Pow Intrinsics
https://bugs.webkit.org/show_bug.cgi?id=141540

Patch by Benjamin Poulain <[email protected]> on 2015-02-13
Reviewed by Filip Pizlo.

Add a DFG Node for PowIntrinsic. This patch covers the basic cases
need to avoid massive regression. I will iterate over the node to cover
the missing types.

With this patch I get the following progressions on benchmarks:
-LongSpider's math-partial-sums: +5%.
-Kraken's imaging-darkroom: +17%
-AsmBench's cray.c: +6.6%
-CompressionBench: +2.2% globally.

  • dfg/DFGAbstractInterpreterInlines.h:

(JSC::DFG::AbstractInterpreter<AbstractStateType>::executeEffects):
Cover a couple of trivial cases:
-If the exponent is zero, the result is always one, regardless of the base.
-If both arguments are constants, compute the result at compile time.

  • dfg/DFGByteCodeParser.cpp:

(JSC::DFG::ByteCodeParser::handleIntrinsic):

  • dfg/DFGClobberize.h:

(JSC::DFG::clobberize):

  • dfg/DFGDoesGC.cpp:

(JSC::DFG::doesGC):

  • dfg/DFGFixupPhase.cpp:

(JSC::DFG::FixupPhase::fixupNode):
We only support 2 basic cases at this time:
-Math.pow(double, int)
-Math.pow(double, double).

I'll cover Math.pow(int, int) in a follow up.

  • dfg/DFGNode.h:

(JSC::DFG::Node::convertToArithSqrt):
(JSC::DFG::Node::arithNodeFlags):

  • dfg/DFGNodeType.h:
  • dfg/DFGPredictionPropagationPhase.cpp:

(JSC::DFG::PredictionPropagationPhase::propagate):
(JSC::DFG::PredictionPropagationPhase::doDoubleVoting):

  • dfg/DFGSafeToExecute.h:

(JSC::DFG::safeToExecute):

  • dfg/DFGSpeculativeJIT.cpp:

(JSC::DFG::compileArithPowIntegerFastPath):
(JSC::DFG::SpeculativeJIT::compileArithPow):

  • dfg/DFGSpeculativeJIT.h:
  • dfg/DFGSpeculativeJIT32_64.cpp:

(JSC::DFG::SpeculativeJIT::compile):

  • dfg/DFGSpeculativeJIT64.cpp:

(JSC::DFG::SpeculativeJIT::compile):

  • dfg/DFGStrengthReductionPhase.cpp:

(JSC::DFG::StrengthReductionPhase::handleNode):

  • dfg/DFGValidate.cpp:

(JSC::DFG::Validate::validate):

  • ftl/FTLCapabilities.cpp:

(JSC::FTL::canCompile):

  • ftl/FTLIntrinsicRepository.h:
  • ftl/FTLLowerDFGToLLVM.cpp:

(JSC::FTL::LowerDFGToLLVM::compileNode):
(JSC::FTL::LowerDFGToLLVM::compileArithPow):

  • ftl/FTLOutput.h:

(JSC::FTL::Output::doublePow):
(JSC::FTL::Output::doublePowi):

  • jit/JITOperations.cpp:
  • jit/JITOperations.h:
  • runtime/MathObject.cpp:

(JSC::mathProtoFuncPow):
(JSC::isDenormal): Deleted.
(JSC::isEdgeCase): Deleted.
(JSC::mathPow): Deleted.

  • tests/stress/math-pow-basics.js: Added.
  • tests/stress/math-pow-integer-exponent-fastpath.js: Added.
  • tests/stress/math-pow-nan-behaviors.js: Added.
  • tests/stress/math-pow-with-constants.js: Added.

Start some basic testing of Math.pow().
Due to the various transform, the value change when the code tiers up,
I covered this by checking for approximate values.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/Source/JavaScriptCore/jit/JITOperations.cpp

    r179887 r180098  
    12141214#endif
    12151215
     1216#if PLATFORM(IOS) && CPU(ARM_THUMB2)
     1217
     1218// The following code is taken from netlib.org:
     1219//   http://www.netlib.org/fdlibm/fdlibm.h
     1220//   http://www.netlib.org/fdlibm/e_pow.c
     1221//   http://www.netlib.org/fdlibm/s_scalbn.c
     1222//
     1223// And was originally distributed under the following license:
     1224
     1225/*
     1226 * ====================================================
     1227 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     1228 *
     1229 * Developed at SunSoft, a Sun Microsystems, Inc. business.
     1230 * Permission to use, copy, modify, and distribute this
     1231 * software is freely granted, provided that this notice
     1232 * is preserved.
     1233 * ====================================================
     1234 */
     1235/*
     1236 * ====================================================
     1237 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
     1238 *
     1239 * Permission to use, copy, modify, and distribute this
     1240 * software is freely granted, provided that this notice
     1241 * is preserved.
     1242 * ====================================================
     1243 */
     1244
     1245/* __ieee754_pow(x,y) return x**y
     1246 *
     1247 *              n
     1248 * Method:  Let x =  2   * (1+f)
     1249 *    1. Compute and return log2(x) in two pieces:
     1250 *        log2(x) = w1 + w2,
     1251 *       where w1 has 53-24 = 29 bit trailing zeros.
     1252 *    2. Perform y*log2(x) = n+y' by simulating muti-precision
     1253 *       arithmetic, where |y'|<=0.5.
     1254 *    3. Return x**y = 2**n*exp(y'*log2)
     1255 *
     1256 * Special cases:
     1257 *    1.  (anything) ** 0  is 1
     1258 *    2.  (anything) ** 1  is itself
     1259 *    3.  (anything) ** NAN is NAN
     1260 *    4.  NAN ** (anything except 0) is NAN
     1261 *    5.  +-(|x| > 1) **  +INF is +INF
     1262 *    6.  +-(|x| > 1) **  -INF is +0
     1263 *    7.  +-(|x| < 1) **  +INF is +0
     1264 *    8.  +-(|x| < 1) **  -INF is +INF
     1265 *    9.  +-1         ** +-INF is NAN
     1266 *    10. +0 ** (+anything except 0, NAN)               is +0
     1267 *    11. -0 ** (+anything except 0, NAN, odd integer)  is +0
     1268 *    12. +0 ** (-anything except 0, NAN)               is +INF
     1269 *    13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
     1270 *    14. -0 ** (odd integer) = -( +0 ** (odd integer) )
     1271 *    15. +INF ** (+anything except 0,NAN) is +INF
     1272 *    16. +INF ** (-anything except 0,NAN) is +0
     1273 *    17. -INF ** (anything)  = -0 ** (-anything)
     1274 *    18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
     1275 *    19. (-anything except 0 and inf) ** (non-integer) is NAN
     1276 *
     1277 * Accuracy:
     1278 *    pow(x,y) returns x**y nearly rounded. In particular
     1279 *            pow(integer,integer)
     1280 *    always returns the correct integer provided it is
     1281 *    representable.
     1282 *
     1283 * Constants :
     1284 * The hexadecimal values are the intended ones for the following
     1285 * constants. The decimal values may be used, provided that the
     1286 * compiler will convert from decimal to binary accurately enough
     1287 * to produce the hexadecimal values shown.
     1288 */
     1289
     1290#define __HI(x) *(1+(int*)&x)
     1291#define __LO(x) *(int*)&x
     1292
     1293static const double
     1294bp[] = {1.0, 1.5,},
     1295dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
     1296dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
     1297zero    =  0.0,
     1298one    =  1.0,
     1299two    =  2.0,
     1300two53    =  9007199254740992.0,    /* 0x43400000, 0x00000000 */
     1301huge    =  1.0e300,
     1302tiny    =  1.0e-300,
     1303        /* for scalbn */
     1304two54   =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
     1305twom54  =  5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
     1306    /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
     1307L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
     1308L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
     1309L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
     1310L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
     1311L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
     1312L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
     1313P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
     1314P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
     1315P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
     1316P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
     1317P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
     1318lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
     1319lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
     1320lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
     1321ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
     1322cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
     1323cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
     1324cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
     1325ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
     1326ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
     1327ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
     1328
     1329inline double fdlibmScalbn (double x, int n)
     1330{
     1331    int  k,hx,lx;
     1332    hx = __HI(x);
     1333    lx = __LO(x);
     1334        k = (hx&0x7ff00000)>>20;        /* extract exponent */
     1335        if (k==0) {                /* 0 or subnormal x */
     1336            if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
     1337        x *= two54;
     1338        hx = __HI(x);
     1339        k = ((hx&0x7ff00000)>>20) - 54;
     1340            if (n< -50000) return tiny*x;     /*underflow*/
     1341        }
     1342        if (k==0x7ff) return x+x;        /* NaN or Inf */
     1343        k = k+n;
     1344        if (k >  0x7fe) return huge*copysign(huge,x); /* overflow  */
     1345        if (k > 0)                 /* normal result */
     1346        {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
     1347        if (k <= -54) {
     1348            if (n > 50000)     /* in case integer overflow in n+k */
     1349        return huge*copysign(huge,x);    /*overflow*/
     1350        else return tiny*copysign(tiny,x);     /*underflow*/
     1351        }
     1352        k += 54;                /* subnormal result */
     1353        __HI(x) = (hx&0x800fffff)|(k<<20);
     1354        return x*twom54;
     1355}
     1356
     1357static double fdlibmPow(double x, double y)
     1358{
     1359    double z,ax,z_h,z_l,p_h,p_l;
     1360    double y1,t1,t2,r,s,t,u,v,w;
     1361    int i0,i1,i,j,k,yisint,n;
     1362    int hx,hy,ix,iy;
     1363    unsigned lx,ly;
     1364
     1365    i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
     1366    hx = __HI(x); lx = __LO(x);
     1367    hy = __HI(y); ly = __LO(y);
     1368    ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
     1369
     1370    /* y==zero: x**0 = 1 */
     1371    if((iy|ly)==0) return one;     
     1372
     1373    /* +-NaN return x+y */
     1374    if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
     1375       iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
     1376        return x+y;   
     1377
     1378    /* determine if y is an odd int when x < 0
     1379     * yisint = 0    ... y is not an integer
     1380     * yisint = 1    ... y is an odd int
     1381     * yisint = 2    ... y is an even int
     1382     */
     1383    yisint  = 0;
     1384    if(hx<0) {   
     1385        if(iy>=0x43400000) yisint = 2; /* even integer y */
     1386        else if(iy>=0x3ff00000) {
     1387        k = (iy>>20)-0x3ff;       /* exponent */
     1388        if(k>20) {
     1389            j = ly>>(52-k);
     1390            if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1);
     1391        } else if(ly==0) {
     1392            j = iy>>(20-k);
     1393            if((j<<(20-k))==iy) yisint = 2-(j&1);
     1394        }
     1395        }       
     1396    }
     1397
     1398    /* special value of y */
     1399    if(ly==0) {     
     1400        if (iy==0x7ff00000) {    /* y is +-inf */
     1401            if(((ix-0x3ff00000)|lx)==0)
     1402            return  y - y;    /* inf**+-1 is NaN */
     1403            else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
     1404            return (hy>=0)? y: zero;
     1405            else            /* (|x|<1)**-,+inf = inf,0 */
     1406            return (hy<0)?-y: zero;
     1407        }
     1408        if(iy==0x3ff00000) {    /* y is  +-1 */
     1409        if(hy<0) return one/x; else return x;
     1410        }
     1411        if(hy==0x40000000) return x*x; /* y is  2 */
     1412        if(hy==0x3fe00000) {    /* y is  0.5 */
     1413        if(hx>=0)    /* x >= +0 */
     1414        return sqrt(x);   
     1415        }
     1416    }
     1417
     1418    ax   = fabs(x);
     1419    /* special value of x */
     1420    if(lx==0) {
     1421        if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
     1422        z = ax;            /*x is +-0,+-inf,+-1*/
     1423        if(hy<0) z = one/z;    /* z = (1/|x|) */
     1424        if(hx<0) {
     1425            if(((ix-0x3ff00000)|yisint)==0) {
     1426            z = (z-z)/(z-z); /* (-1)**non-int is NaN */
     1427            } else if(yisint==1)
     1428            z = -z;        /* (x<0)**odd = -(|x|**odd) */
     1429        }
     1430        return z;
     1431        }
     1432    }
     1433   
     1434    n = (hx>>31)+1;
     1435
     1436    /* (x<0)**(non-int) is NaN */
     1437    if((n|yisint)==0) return (x-x)/(x-x);
     1438
     1439    s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
     1440    if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
     1441
     1442    /* |y| is huge */
     1443    if(iy>0x41e00000) { /* if |y| > 2**31 */
     1444        if(iy>0x43f00000){    /* if |y| > 2**64, must o/uflow */
     1445        if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
     1446        if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
     1447        }
     1448    /* over/underflow if x is not close to one */
     1449        if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
     1450        if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
     1451    /* now |1-x| is tiny <= 2**-20, suffice to compute
     1452       log(x) by x-x^2/2+x^3/3-x^4/4 */
     1453        t = ax-one;        /* t has 20 trailing zeros */
     1454        w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
     1455        u = ivln2_h*t;    /* ivln2_h has 21 sig. bits */
     1456        v = t*ivln2_l-w*ivln2;
     1457        t1 = u+v;
     1458        __LO(t1) = 0;
     1459        t2 = v-(t1-u);
     1460    } else {
     1461        double ss,s2,s_h,s_l,t_h,t_l;
     1462        n = 0;
     1463    /* take care subnormal number */
     1464        if(ix<0x00100000)
     1465        {ax *= two53; n -= 53; ix = __HI(ax); }
     1466        n  += ((ix)>>20)-0x3ff;
     1467        j  = ix&0x000fffff;
     1468    /* determine interval */
     1469        ix = j|0x3ff00000;        /* normalize ix */
     1470        if(j<=0x3988E) k=0;        /* |x|<sqrt(3/2) */
     1471        else if(j<0xBB67A) k=1;    /* |x|<sqrt(3)   */
     1472        else {k=0;n+=1;ix -= 0x00100000;}
     1473        __HI(ax) = ix;
     1474
     1475    /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
     1476        u = ax-bp[k];        /* bp[0]=1.0, bp[1]=1.5 */
     1477        v = one/(ax+bp[k]);
     1478        ss = u*v;
     1479        s_h = ss;
     1480        __LO(s_h) = 0;
     1481    /* t_h=ax+bp[k] High */
     1482        t_h = zero;
     1483        __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
     1484        t_l = ax - (t_h-bp[k]);
     1485        s_l = v*((u-s_h*t_h)-s_h*t_l);
     1486    /* compute log(ax) */
     1487        s2 = ss*ss;
     1488        r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
     1489        r += s_l*(s_h+ss);
     1490        s2  = s_h*s_h;
     1491        t_h = 3.0+s2+r;
     1492        __LO(t_h) = 0;
     1493        t_l = r-((t_h-3.0)-s2);
     1494    /* u+v = ss*(1+...) */
     1495        u = s_h*t_h;
     1496        v = s_l*t_h+t_l*ss;
     1497    /* 2/(3log2)*(ss+...) */
     1498        p_h = u+v;
     1499        __LO(p_h) = 0;
     1500        p_l = v-(p_h-u);
     1501        z_h = cp_h*p_h;        /* cp_h+cp_l = 2/(3*log2) */
     1502        z_l = cp_l*p_h+p_l*cp+dp_l[k];
     1503    /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
     1504        t = (double)n;
     1505        t1 = (((z_h+z_l)+dp_h[k])+t);
     1506        __LO(t1) = 0;
     1507        t2 = z_l-(((t1-t)-dp_h[k])-z_h);
     1508    }
     1509
     1510    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
     1511    y1  = y;
     1512    __LO(y1) = 0;
     1513    p_l = (y-y1)*t1+y*t2;
     1514    p_h = y1*t1;
     1515    z = p_l+p_h;
     1516    j = __HI(z);
     1517    i = __LO(z);
     1518    if (j>=0x40900000) {                /* z >= 1024 */
     1519        if(((j-0x40900000)|i)!=0)            /* if z > 1024 */
     1520        return s*huge*huge;            /* overflow */
     1521        else {
     1522        if(p_l+ovt>z-p_h) return s*huge*huge;    /* overflow */
     1523        }
     1524    } else if((j&0x7fffffff)>=0x4090cc00 ) {    /* z <= -1075 */
     1525        if(((j-0xc090cc00)|i)!=0)         /* z < -1075 */
     1526        return s*tiny*tiny;        /* underflow */
     1527        else {
     1528        if(p_l<=z-p_h) return s*tiny*tiny;    /* underflow */
     1529        }
     1530    }
     1531    /*
     1532     * compute 2**(p_h+p_l)
     1533     */
     1534    i = j&0x7fffffff;
     1535    k = (i>>20)-0x3ff;
     1536    n = 0;
     1537    if(i>0x3fe00000) {        /* if |z| > 0.5, set n = [z+0.5] */
     1538        n = j+(0x00100000>>(k+1));
     1539        k = ((n&0x7fffffff)>>20)-0x3ff;    /* new k for n */
     1540        t = zero;
     1541        __HI(t) = (n&~(0x000fffff>>k));
     1542        n = ((n&0x000fffff)|0x00100000)>>(20-k);
     1543        if(j<0) n = -n;
     1544        p_h -= t;
     1545    }
     1546    t = p_l+p_h;
     1547    __LO(t) = 0;
     1548    u = t*lg2_h;
     1549    v = (p_l-(t-p_h))*lg2+t*lg2_l;
     1550    z = u+v;
     1551    w = v-(z-u);
     1552    t  = z*z;
     1553    t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
     1554    r  = (z*t1)/(t1-two)-(w+z*w);
     1555    z  = one-(r-z);
     1556    j  = __HI(z);
     1557    j += (n<<20);
     1558    if((j>>20)<=0) z = fdlibmScalbn(z,n);    /* subnormal output */
     1559    else __HI(z) += (n<<20);
     1560    return s*z;
     1561}
     1562
     1563static ALWAYS_INLINE bool isDenormal(double x)
     1564{
     1565    static const uint64_t signbit = 0x8000000000000000ULL;
     1566    static const uint64_t minNormal = 0x0001000000000000ULL;
     1567    return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 < minNormal - 1;
     1568}
     1569
     1570static ALWAYS_INLINE bool isEdgeCase(double x)
     1571{
     1572    static const uint64_t signbit = 0x8000000000000000ULL;
     1573    static const uint64_t infinity = 0x7fffffffffffffffULL;
     1574    return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 >= infinity - 1;
     1575}
     1576
     1577static ALWAYS_INLINE double mathPowInternal(double x, double y)
     1578{
     1579    if (!isDenormal(x) && !isDenormal(y)) {
     1580        double libmResult = pow(x, y);
     1581        if (libmResult || isEdgeCase(x) || isEdgeCase(y))
     1582            return libmResult;
     1583    }
     1584    return fdlibmPow(x, y);
     1585}
     1586
     1587#else
     1588
     1589ALWAYS_INLINE double mathPowInternal(double x, double y)
     1590{
     1591    return pow(x, y);
     1592}
     1593
     1594#endif
     1595
     1596double JSC_HOST_CALL operationMathPow(double x, double y)
     1597{
     1598    if (std::isnan(y))
     1599        return PNaN;
     1600    if (std::isinf(y) && fabs(x) == 1)
     1601        return PNaN;
     1602    return mathPowInternal(x, y);
     1603}
     1604
    12161605void JIT_OPERATION operationPutByIndex(ExecState* exec, EncodedJSValue encodedArrayValue, int32_t index, EncodedJSValue encodedValue)
    12171606{
Note: See TracChangeset for help on using the changeset viewer.