Changeset 180098 in webkit for trunk/Source/JavaScriptCore/jit/JITOperations.cpp
- Timestamp:
- Feb 13, 2015, 8:20:21 PM (11 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/Source/JavaScriptCore/jit/JITOperations.cpp
r179887 r180098 1214 1214 #endif 1215 1215 1216 #if PLATFORM(IOS) && CPU(ARM_THUMB2) 1217 1218 // The following code is taken from netlib.org: 1219 // http://www.netlib.org/fdlibm/fdlibm.h 1220 // http://www.netlib.org/fdlibm/e_pow.c 1221 // http://www.netlib.org/fdlibm/s_scalbn.c 1222 // 1223 // And was originally distributed under the following license: 1224 1225 /* 1226 * ==================================================== 1227 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 1228 * 1229 * Developed at SunSoft, a Sun Microsystems, Inc. business. 1230 * Permission to use, copy, modify, and distribute this 1231 * software is freely granted, provided that this notice 1232 * is preserved. 1233 * ==================================================== 1234 */ 1235 /* 1236 * ==================================================== 1237 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. 1238 * 1239 * Permission to use, copy, modify, and distribute this 1240 * software is freely granted, provided that this notice 1241 * is preserved. 1242 * ==================================================== 1243 */ 1244 1245 /* __ieee754_pow(x,y) return x**y 1246 * 1247 * n 1248 * Method: Let x = 2 * (1+f) 1249 * 1. Compute and return log2(x) in two pieces: 1250 * log2(x) = w1 + w2, 1251 * where w1 has 53-24 = 29 bit trailing zeros. 1252 * 2. Perform y*log2(x) = n+y' by simulating muti-precision 1253 * arithmetic, where |y'|<=0.5. 1254 * 3. Return x**y = 2**n*exp(y'*log2) 1255 * 1256 * Special cases: 1257 * 1. (anything) ** 0 is 1 1258 * 2. (anything) ** 1 is itself 1259 * 3. (anything) ** NAN is NAN 1260 * 4. NAN ** (anything except 0) is NAN 1261 * 5. +-(|x| > 1) ** +INF is +INF 1262 * 6. +-(|x| > 1) ** -INF is +0 1263 * 7. +-(|x| < 1) ** +INF is +0 1264 * 8. +-(|x| < 1) ** -INF is +INF 1265 * 9. +-1 ** +-INF is NAN 1266 * 10. +0 ** (+anything except 0, NAN) is +0 1267 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 1268 * 12. +0 ** (-anything except 0, NAN) is +INF 1269 * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF 1270 * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) 1271 * 15. +INF ** (+anything except 0,NAN) is +INF 1272 * 16. +INF ** (-anything except 0,NAN) is +0 1273 * 17. -INF ** (anything) = -0 ** (-anything) 1274 * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) 1275 * 19. (-anything except 0 and inf) ** (non-integer) is NAN 1276 * 1277 * Accuracy: 1278 * pow(x,y) returns x**y nearly rounded. In particular 1279 * pow(integer,integer) 1280 * always returns the correct integer provided it is 1281 * representable. 1282 * 1283 * Constants : 1284 * The hexadecimal values are the intended ones for the following 1285 * constants. The decimal values may be used, provided that the 1286 * compiler will convert from decimal to binary accurately enough 1287 * to produce the hexadecimal values shown. 1288 */ 1289 1290 #define __HI(x) *(1+(int*)&x) 1291 #define __LO(x) *(int*)&x 1292 1293 static const double 1294 bp[] = {1.0, 1.5,}, 1295 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ 1296 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ 1297 zero = 0.0, 1298 one = 1.0, 1299 two = 2.0, 1300 two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ 1301 huge = 1.0e300, 1302 tiny = 1.0e-300, 1303 /* for scalbn */ 1304 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ 1305 twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ 1306 /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ 1307 L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ 1308 L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ 1309 L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ 1310 L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ 1311 L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ 1312 L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ 1313 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ 1314 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ 1315 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ 1316 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ 1317 P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ 1318 lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ 1319 lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ 1320 lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ 1321 ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ 1322 cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ 1323 cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ 1324 cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ 1325 ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ 1326 ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ 1327 ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ 1328 1329 inline double fdlibmScalbn (double x, int n) 1330 { 1331 int k,hx,lx; 1332 hx = __HI(x); 1333 lx = __LO(x); 1334 k = (hx&0x7ff00000)>>20; /* extract exponent */ 1335 if (k==0) { /* 0 or subnormal x */ 1336 if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ 1337 x *= two54; 1338 hx = __HI(x); 1339 k = ((hx&0x7ff00000)>>20) - 54; 1340 if (n< -50000) return tiny*x; /*underflow*/ 1341 } 1342 if (k==0x7ff) return x+x; /* NaN or Inf */ 1343 k = k+n; 1344 if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */ 1345 if (k > 0) /* normal result */ 1346 {__HI(x) = (hx&0x800fffff)|(k<<20); return x;} 1347 if (k <= -54) { 1348 if (n > 50000) /* in case integer overflow in n+k */ 1349 return huge*copysign(huge,x); /*overflow*/ 1350 else return tiny*copysign(tiny,x); /*underflow*/ 1351 } 1352 k += 54; /* subnormal result */ 1353 __HI(x) = (hx&0x800fffff)|(k<<20); 1354 return x*twom54; 1355 } 1356 1357 static double fdlibmPow(double x, double y) 1358 { 1359 double z,ax,z_h,z_l,p_h,p_l; 1360 double y1,t1,t2,r,s,t,u,v,w; 1361 int i0,i1,i,j,k,yisint,n; 1362 int hx,hy,ix,iy; 1363 unsigned lx,ly; 1364 1365 i0 = ((*(int*)&one)>>29)^1; i1=1-i0; 1366 hx = __HI(x); lx = __LO(x); 1367 hy = __HI(y); ly = __LO(y); 1368 ix = hx&0x7fffffff; iy = hy&0x7fffffff; 1369 1370 /* y==zero: x**0 = 1 */ 1371 if((iy|ly)==0) return one; 1372 1373 /* +-NaN return x+y */ 1374 if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || 1375 iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) 1376 return x+y; 1377 1378 /* determine if y is an odd int when x < 0 1379 * yisint = 0 ... y is not an integer 1380 * yisint = 1 ... y is an odd int 1381 * yisint = 2 ... y is an even int 1382 */ 1383 yisint = 0; 1384 if(hx<0) { 1385 if(iy>=0x43400000) yisint = 2; /* even integer y */ 1386 else if(iy>=0x3ff00000) { 1387 k = (iy>>20)-0x3ff; /* exponent */ 1388 if(k>20) { 1389 j = ly>>(52-k); 1390 if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1); 1391 } else if(ly==0) { 1392 j = iy>>(20-k); 1393 if((j<<(20-k))==iy) yisint = 2-(j&1); 1394 } 1395 } 1396 } 1397 1398 /* special value of y */ 1399 if(ly==0) { 1400 if (iy==0x7ff00000) { /* y is +-inf */ 1401 if(((ix-0x3ff00000)|lx)==0) 1402 return y - y; /* inf**+-1 is NaN */ 1403 else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ 1404 return (hy>=0)? y: zero; 1405 else /* (|x|<1)**-,+inf = inf,0 */ 1406 return (hy<0)?-y: zero; 1407 } 1408 if(iy==0x3ff00000) { /* y is +-1 */ 1409 if(hy<0) return one/x; else return x; 1410 } 1411 if(hy==0x40000000) return x*x; /* y is 2 */ 1412 if(hy==0x3fe00000) { /* y is 0.5 */ 1413 if(hx>=0) /* x >= +0 */ 1414 return sqrt(x); 1415 } 1416 } 1417 1418 ax = fabs(x); 1419 /* special value of x */ 1420 if(lx==0) { 1421 if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ 1422 z = ax; /*x is +-0,+-inf,+-1*/ 1423 if(hy<0) z = one/z; /* z = (1/|x|) */ 1424 if(hx<0) { 1425 if(((ix-0x3ff00000)|yisint)==0) { 1426 z = (z-z)/(z-z); /* (-1)**non-int is NaN */ 1427 } else if(yisint==1) 1428 z = -z; /* (x<0)**odd = -(|x|**odd) */ 1429 } 1430 return z; 1431 } 1432 } 1433 1434 n = (hx>>31)+1; 1435 1436 /* (x<0)**(non-int) is NaN */ 1437 if((n|yisint)==0) return (x-x)/(x-x); 1438 1439 s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ 1440 if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ 1441 1442 /* |y| is huge */ 1443 if(iy>0x41e00000) { /* if |y| > 2**31 */ 1444 if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ 1445 if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; 1446 if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; 1447 } 1448 /* over/underflow if x is not close to one */ 1449 if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny; 1450 if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny; 1451 /* now |1-x| is tiny <= 2**-20, suffice to compute 1452 log(x) by x-x^2/2+x^3/3-x^4/4 */ 1453 t = ax-one; /* t has 20 trailing zeros */ 1454 w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); 1455 u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ 1456 v = t*ivln2_l-w*ivln2; 1457 t1 = u+v; 1458 __LO(t1) = 0; 1459 t2 = v-(t1-u); 1460 } else { 1461 double ss,s2,s_h,s_l,t_h,t_l; 1462 n = 0; 1463 /* take care subnormal number */ 1464 if(ix<0x00100000) 1465 {ax *= two53; n -= 53; ix = __HI(ax); } 1466 n += ((ix)>>20)-0x3ff; 1467 j = ix&0x000fffff; 1468 /* determine interval */ 1469 ix = j|0x3ff00000; /* normalize ix */ 1470 if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ 1471 else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ 1472 else {k=0;n+=1;ix -= 0x00100000;} 1473 __HI(ax) = ix; 1474 1475 /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ 1476 u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ 1477 v = one/(ax+bp[k]); 1478 ss = u*v; 1479 s_h = ss; 1480 __LO(s_h) = 0; 1481 /* t_h=ax+bp[k] High */ 1482 t_h = zero; 1483 __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18); 1484 t_l = ax - (t_h-bp[k]); 1485 s_l = v*((u-s_h*t_h)-s_h*t_l); 1486 /* compute log(ax) */ 1487 s2 = ss*ss; 1488 r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); 1489 r += s_l*(s_h+ss); 1490 s2 = s_h*s_h; 1491 t_h = 3.0+s2+r; 1492 __LO(t_h) = 0; 1493 t_l = r-((t_h-3.0)-s2); 1494 /* u+v = ss*(1+...) */ 1495 u = s_h*t_h; 1496 v = s_l*t_h+t_l*ss; 1497 /* 2/(3log2)*(ss+...) */ 1498 p_h = u+v; 1499 __LO(p_h) = 0; 1500 p_l = v-(p_h-u); 1501 z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ 1502 z_l = cp_l*p_h+p_l*cp+dp_l[k]; 1503 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ 1504 t = (double)n; 1505 t1 = (((z_h+z_l)+dp_h[k])+t); 1506 __LO(t1) = 0; 1507 t2 = z_l-(((t1-t)-dp_h[k])-z_h); 1508 } 1509 1510 /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ 1511 y1 = y; 1512 __LO(y1) = 0; 1513 p_l = (y-y1)*t1+y*t2; 1514 p_h = y1*t1; 1515 z = p_l+p_h; 1516 j = __HI(z); 1517 i = __LO(z); 1518 if (j>=0x40900000) { /* z >= 1024 */ 1519 if(((j-0x40900000)|i)!=0) /* if z > 1024 */ 1520 return s*huge*huge; /* overflow */ 1521 else { 1522 if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ 1523 } 1524 } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ 1525 if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ 1526 return s*tiny*tiny; /* underflow */ 1527 else { 1528 if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ 1529 } 1530 } 1531 /* 1532 * compute 2**(p_h+p_l) 1533 */ 1534 i = j&0x7fffffff; 1535 k = (i>>20)-0x3ff; 1536 n = 0; 1537 if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ 1538 n = j+(0x00100000>>(k+1)); 1539 k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ 1540 t = zero; 1541 __HI(t) = (n&~(0x000fffff>>k)); 1542 n = ((n&0x000fffff)|0x00100000)>>(20-k); 1543 if(j<0) n = -n; 1544 p_h -= t; 1545 } 1546 t = p_l+p_h; 1547 __LO(t) = 0; 1548 u = t*lg2_h; 1549 v = (p_l-(t-p_h))*lg2+t*lg2_l; 1550 z = u+v; 1551 w = v-(z-u); 1552 t = z*z; 1553 t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); 1554 r = (z*t1)/(t1-two)-(w+z*w); 1555 z = one-(r-z); 1556 j = __HI(z); 1557 j += (n<<20); 1558 if((j>>20)<=0) z = fdlibmScalbn(z,n); /* subnormal output */ 1559 else __HI(z) += (n<<20); 1560 return s*z; 1561 } 1562 1563 static ALWAYS_INLINE bool isDenormal(double x) 1564 { 1565 static const uint64_t signbit = 0x8000000000000000ULL; 1566 static const uint64_t minNormal = 0x0001000000000000ULL; 1567 return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 < minNormal - 1; 1568 } 1569 1570 static ALWAYS_INLINE bool isEdgeCase(double x) 1571 { 1572 static const uint64_t signbit = 0x8000000000000000ULL; 1573 static const uint64_t infinity = 0x7fffffffffffffffULL; 1574 return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 >= infinity - 1; 1575 } 1576 1577 static ALWAYS_INLINE double mathPowInternal(double x, double y) 1578 { 1579 if (!isDenormal(x) && !isDenormal(y)) { 1580 double libmResult = pow(x, y); 1581 if (libmResult || isEdgeCase(x) || isEdgeCase(y)) 1582 return libmResult; 1583 } 1584 return fdlibmPow(x, y); 1585 } 1586 1587 #else 1588 1589 ALWAYS_INLINE double mathPowInternal(double x, double y) 1590 { 1591 return pow(x, y); 1592 } 1593 1594 #endif 1595 1596 double JSC_HOST_CALL operationMathPow(double x, double y) 1597 { 1598 if (std::isnan(y)) 1599 return PNaN; 1600 if (std::isinf(y) && fabs(x) == 1) 1601 return PNaN; 1602 return mathPowInternal(x, y); 1603 } 1604 1216 1605 void JIT_OPERATION operationPutByIndex(ExecState* exec, EncodedJSValue encodedArrayValue, int32_t index, EncodedJSValue encodedValue) 1217 1606 {
Note:
See TracChangeset
for help on using the changeset viewer.