Ignore:
Timestamp:
Feb 18, 2015, 12:01:01 AM (11 years ago)
Author:
[email protected]
Message:

Fix the C-Loop LLInt build
https://bugs.webkit.org/show_bug.cgi?id=141618

Reviewed by Filip Pizlo.

I broke C-Loop when moving the common code of pow()
to JITOperations because that file is #ifdefed out
when the JITs are disabled.

It would be weird to move it back to MathObject since
the function needs to know about the calling conventions.

To avoid making a mess, I just gave the function its own file
that is used by both the runtime and the JIT.

  • CMakeLists.txt:
  • JavaScriptCore.vcxproj/JavaScriptCore.vcxproj:
  • JavaScriptCore.vcxproj/JavaScriptCore.vcxproj.filters:
  • JavaScriptCore.xcodeproj/project.pbxproj:
  • dfg/DFGAbstractInterpreterInlines.h:
  • jit/JITOperations.cpp:
  • jit/JITOperations.h:
  • runtime/MathCommon.cpp: Added.

(JSC::fdlibmScalbn):
(JSC::fdlibmPow):
(JSC::isDenormal):
(JSC::isEdgeCase):
(JSC::mathPowInternal):
(JSC::operationMathPow):

  • runtime/MathCommon.h: Added.
  • runtime/MathObject.cpp:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/Source/JavaScriptCore/jit/JITOperations.cpp

    r180102 r180258  
    12141214#endif
    12151215
    1216 #if PLATFORM(IOS) && CPU(ARM_THUMB2)
    1217 
    1218 // The following code is taken from netlib.org:
    1219 //   http://www.netlib.org/fdlibm/fdlibm.h
    1220 //   http://www.netlib.org/fdlibm/e_pow.c
    1221 //   http://www.netlib.org/fdlibm/s_scalbn.c
    1222 //
    1223 // And was originally distributed under the following license:
    1224 
    1225 /*
    1226  * ====================================================
    1227  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
    1228  *
    1229  * Developed at SunSoft, a Sun Microsystems, Inc. business.
    1230  * Permission to use, copy, modify, and distribute this
    1231  * software is freely granted, provided that this notice
    1232  * is preserved.
    1233  * ====================================================
    1234  */
    1235 /*
    1236  * ====================================================
    1237  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
    1238  *
    1239  * Permission to use, copy, modify, and distribute this
    1240  * software is freely granted, provided that this notice
    1241  * is preserved.
    1242  * ====================================================
    1243  */
    1244 
    1245 /* __ieee754_pow(x,y) return x**y
    1246  *
    1247  *              n
    1248  * Method:  Let x =  2   * (1+f)
    1249  *    1. Compute and return log2(x) in two pieces:
    1250  *        log2(x) = w1 + w2,
    1251  *       where w1 has 53-24 = 29 bit trailing zeros.
    1252  *    2. Perform y*log2(x) = n+y' by simulating muti-precision
    1253  *       arithmetic, where |y'|<=0.5.
    1254  *    3. Return x**y = 2**n*exp(y'*log2)
    1255  *
    1256  * Special cases:
    1257  *    1.  (anything) ** 0  is 1
    1258  *    2.  (anything) ** 1  is itself
    1259  *    3.  (anything) ** NAN is NAN
    1260  *    4.  NAN ** (anything except 0) is NAN
    1261  *    5.  +-(|x| > 1) **  +INF is +INF
    1262  *    6.  +-(|x| > 1) **  -INF is +0
    1263  *    7.  +-(|x| < 1) **  +INF is +0
    1264  *    8.  +-(|x| < 1) **  -INF is +INF
    1265  *    9.  +-1         ** +-INF is NAN
    1266  *    10. +0 ** (+anything except 0, NAN)               is +0
    1267  *    11. -0 ** (+anything except 0, NAN, odd integer)  is +0
    1268  *    12. +0 ** (-anything except 0, NAN)               is +INF
    1269  *    13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
    1270  *    14. -0 ** (odd integer) = -( +0 ** (odd integer) )
    1271  *    15. +INF ** (+anything except 0,NAN) is +INF
    1272  *    16. +INF ** (-anything except 0,NAN) is +0
    1273  *    17. -INF ** (anything)  = -0 ** (-anything)
    1274  *    18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
    1275  *    19. (-anything except 0 and inf) ** (non-integer) is NAN
    1276  *
    1277  * Accuracy:
    1278  *    pow(x,y) returns x**y nearly rounded. In particular
    1279  *            pow(integer,integer)
    1280  *    always returns the correct integer provided it is
    1281  *    representable.
    1282  *
    1283  * Constants :
    1284  * The hexadecimal values are the intended ones for the following
    1285  * constants. The decimal values may be used, provided that the
    1286  * compiler will convert from decimal to binary accurately enough
    1287  * to produce the hexadecimal values shown.
    1288  */
    1289 
    1290 #define __HI(x) *(1+(int*)&x)
    1291 #define __LO(x) *(int*)&x
    1292 
    1293 static const double
    1294 bp[] = {1.0, 1.5,},
    1295 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
    1296 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
    1297 zero    =  0.0,
    1298 one    =  1.0,
    1299 two    =  2.0,
    1300 two53    =  9007199254740992.0,    /* 0x43400000, 0x00000000 */
    1301 huge    =  1.0e300,
    1302 tiny    =  1.0e-300,
    1303         /* for scalbn */
    1304 two54   =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
    1305 twom54  =  5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
    1306     /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
    1307 L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
    1308 L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
    1309 L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
    1310 L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
    1311 L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
    1312 L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
    1313 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
    1314 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
    1315 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
    1316 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
    1317 P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
    1318 lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
    1319 lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
    1320 lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
    1321 ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
    1322 cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
    1323 cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
    1324 cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
    1325 ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
    1326 ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
    1327 ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
    1328 
    1329 inline double fdlibmScalbn (double x, int n)
    1330 {
    1331     int  k,hx,lx;
    1332     hx = __HI(x);
    1333     lx = __LO(x);
    1334         k = (hx&0x7ff00000)>>20;        /* extract exponent */
    1335         if (k==0) {                /* 0 or subnormal x */
    1336             if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
    1337         x *= two54;
    1338         hx = __HI(x);
    1339         k = ((hx&0x7ff00000)>>20) - 54;
    1340             if (n< -50000) return tiny*x;     /*underflow*/
    1341         }
    1342         if (k==0x7ff) return x+x;        /* NaN or Inf */
    1343         k = k+n;
    1344         if (k >  0x7fe) return huge*copysign(huge,x); /* overflow  */
    1345         if (k > 0)                 /* normal result */
    1346         {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
    1347         if (k <= -54) {
    1348             if (n > 50000)     /* in case integer overflow in n+k */
    1349         return huge*copysign(huge,x);    /*overflow*/
    1350         else return tiny*copysign(tiny,x);     /*underflow*/
    1351         }
    1352         k += 54;                /* subnormal result */
    1353         __HI(x) = (hx&0x800fffff)|(k<<20);
    1354         return x*twom54;
    1355 }
    1356 
    1357 static double fdlibmPow(double x, double y)
    1358 {
    1359     double z,ax,z_h,z_l,p_h,p_l;
    1360     double y1,t1,t2,r,s,t,u,v,w;
    1361     int i0,i1,i,j,k,yisint,n;
    1362     int hx,hy,ix,iy;
    1363     unsigned lx,ly;
    1364 
    1365     i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
    1366     hx = __HI(x); lx = __LO(x);
    1367     hy = __HI(y); ly = __LO(y);
    1368     ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
    1369 
    1370     /* y==zero: x**0 = 1 */
    1371     if((iy|ly)==0) return one;     
    1372 
    1373     /* +-NaN return x+y */
    1374     if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
    1375        iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
    1376         return x+y;   
    1377 
    1378     /* determine if y is an odd int when x < 0
    1379      * yisint = 0    ... y is not an integer
    1380      * yisint = 1    ... y is an odd int
    1381      * yisint = 2    ... y is an even int
    1382      */
    1383     yisint  = 0;
    1384     if(hx<0) {   
    1385         if(iy>=0x43400000) yisint = 2; /* even integer y */
    1386         else if(iy>=0x3ff00000) {
    1387         k = (iy>>20)-0x3ff;       /* exponent */
    1388         if(k>20) {
    1389             j = ly>>(52-k);
    1390             if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1);
    1391         } else if(ly==0) {
    1392             j = iy>>(20-k);
    1393             if((j<<(20-k))==iy) yisint = 2-(j&1);
    1394         }
    1395         }       
    1396     }
    1397 
    1398     /* special value of y */
    1399     if(ly==0) {     
    1400         if (iy==0x7ff00000) {    /* y is +-inf */
    1401             if(((ix-0x3ff00000)|lx)==0)
    1402             return  y - y;    /* inf**+-1 is NaN */
    1403             else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
    1404             return (hy>=0)? y: zero;
    1405             else            /* (|x|<1)**-,+inf = inf,0 */
    1406             return (hy<0)?-y: zero;
    1407         }
    1408         if(iy==0x3ff00000) {    /* y is  +-1 */
    1409         if(hy<0) return one/x; else return x;
    1410         }
    1411         if(hy==0x40000000) return x*x; /* y is  2 */
    1412         if(hy==0x3fe00000) {    /* y is  0.5 */
    1413         if(hx>=0)    /* x >= +0 */
    1414         return sqrt(x);   
    1415         }
    1416     }
    1417 
    1418     ax   = fabs(x);
    1419     /* special value of x */
    1420     if(lx==0) {
    1421         if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
    1422         z = ax;            /*x is +-0,+-inf,+-1*/
    1423         if(hy<0) z = one/z;    /* z = (1/|x|) */
    1424         if(hx<0) {
    1425             if(((ix-0x3ff00000)|yisint)==0) {
    1426             z = (z-z)/(z-z); /* (-1)**non-int is NaN */
    1427             } else if(yisint==1)
    1428             z = -z;        /* (x<0)**odd = -(|x|**odd) */
    1429         }
    1430         return z;
    1431         }
    1432     }
    1433    
    1434     n = (hx>>31)+1;
    1435 
    1436     /* (x<0)**(non-int) is NaN */
    1437     if((n|yisint)==0) return (x-x)/(x-x);
    1438 
    1439     s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
    1440     if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
    1441 
    1442     /* |y| is huge */
    1443     if(iy>0x41e00000) { /* if |y| > 2**31 */
    1444         if(iy>0x43f00000){    /* if |y| > 2**64, must o/uflow */
    1445         if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
    1446         if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
    1447         }
    1448     /* over/underflow if x is not close to one */
    1449         if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
    1450         if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
    1451     /* now |1-x| is tiny <= 2**-20, suffice to compute
    1452        log(x) by x-x^2/2+x^3/3-x^4/4 */
    1453         t = ax-one;        /* t has 20 trailing zeros */
    1454         w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
    1455         u = ivln2_h*t;    /* ivln2_h has 21 sig. bits */
    1456         v = t*ivln2_l-w*ivln2;
    1457         t1 = u+v;
    1458         __LO(t1) = 0;
    1459         t2 = v-(t1-u);
    1460     } else {
    1461         double ss,s2,s_h,s_l,t_h,t_l;
    1462         n = 0;
    1463     /* take care subnormal number */
    1464         if(ix<0x00100000)
    1465         {ax *= two53; n -= 53; ix = __HI(ax); }
    1466         n  += ((ix)>>20)-0x3ff;
    1467         j  = ix&0x000fffff;
    1468     /* determine interval */
    1469         ix = j|0x3ff00000;        /* normalize ix */
    1470         if(j<=0x3988E) k=0;        /* |x|<sqrt(3/2) */
    1471         else if(j<0xBB67A) k=1;    /* |x|<sqrt(3)   */
    1472         else {k=0;n+=1;ix -= 0x00100000;}
    1473         __HI(ax) = ix;
    1474 
    1475     /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
    1476         u = ax-bp[k];        /* bp[0]=1.0, bp[1]=1.5 */
    1477         v = one/(ax+bp[k]);
    1478         ss = u*v;
    1479         s_h = ss;
    1480         __LO(s_h) = 0;
    1481     /* t_h=ax+bp[k] High */
    1482         t_h = zero;
    1483         __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
    1484         t_l = ax - (t_h-bp[k]);
    1485         s_l = v*((u-s_h*t_h)-s_h*t_l);
    1486     /* compute log(ax) */
    1487         s2 = ss*ss;
    1488         r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
    1489         r += s_l*(s_h+ss);
    1490         s2  = s_h*s_h;
    1491         t_h = 3.0+s2+r;
    1492         __LO(t_h) = 0;
    1493         t_l = r-((t_h-3.0)-s2);
    1494     /* u+v = ss*(1+...) */
    1495         u = s_h*t_h;
    1496         v = s_l*t_h+t_l*ss;
    1497     /* 2/(3log2)*(ss+...) */
    1498         p_h = u+v;
    1499         __LO(p_h) = 0;
    1500         p_l = v-(p_h-u);
    1501         z_h = cp_h*p_h;        /* cp_h+cp_l = 2/(3*log2) */
    1502         z_l = cp_l*p_h+p_l*cp+dp_l[k];
    1503     /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
    1504         t = (double)n;
    1505         t1 = (((z_h+z_l)+dp_h[k])+t);
    1506         __LO(t1) = 0;
    1507         t2 = z_l-(((t1-t)-dp_h[k])-z_h);
    1508     }
    1509 
    1510     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
    1511     y1  = y;
    1512     __LO(y1) = 0;
    1513     p_l = (y-y1)*t1+y*t2;
    1514     p_h = y1*t1;
    1515     z = p_l+p_h;
    1516     j = __HI(z);
    1517     i = __LO(z);
    1518     if (j>=0x40900000) {                /* z >= 1024 */
    1519         if(((j-0x40900000)|i)!=0)            /* if z > 1024 */
    1520         return s*huge*huge;            /* overflow */
    1521         else {
    1522         if(p_l+ovt>z-p_h) return s*huge*huge;    /* overflow */
    1523         }
    1524     } else if((j&0x7fffffff)>=0x4090cc00 ) {    /* z <= -1075 */
    1525         if(((j-0xc090cc00)|i)!=0)         /* z < -1075 */
    1526         return s*tiny*tiny;        /* underflow */
    1527         else {
    1528         if(p_l<=z-p_h) return s*tiny*tiny;    /* underflow */
    1529         }
    1530     }
    1531     /*
    1532      * compute 2**(p_h+p_l)
    1533      */
    1534     i = j&0x7fffffff;
    1535     k = (i>>20)-0x3ff;
    1536     n = 0;
    1537     if(i>0x3fe00000) {        /* if |z| > 0.5, set n = [z+0.5] */
    1538         n = j+(0x00100000>>(k+1));
    1539         k = ((n&0x7fffffff)>>20)-0x3ff;    /* new k for n */
    1540         t = zero;
    1541         __HI(t) = (n&~(0x000fffff>>k));
    1542         n = ((n&0x000fffff)|0x00100000)>>(20-k);
    1543         if(j<0) n = -n;
    1544         p_h -= t;
    1545     }
    1546     t = p_l+p_h;
    1547     __LO(t) = 0;
    1548     u = t*lg2_h;
    1549     v = (p_l-(t-p_h))*lg2+t*lg2_l;
    1550     z = u+v;
    1551     w = v-(z-u);
    1552     t  = z*z;
    1553     t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
    1554     r  = (z*t1)/(t1-two)-(w+z*w);
    1555     z  = one-(r-z);
    1556     j  = __HI(z);
    1557     j += (n<<20);
    1558     if((j>>20)<=0) z = fdlibmScalbn(z,n);    /* subnormal output */
    1559     else __HI(z) += (n<<20);
    1560     return s*z;
    1561 }
    1562 
    1563 static ALWAYS_INLINE bool isDenormal(double x)
    1564 {
    1565     static const uint64_t signbit = 0x8000000000000000ULL;
    1566     static const uint64_t minNormal = 0x0001000000000000ULL;
    1567     return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 < minNormal - 1;
    1568 }
    1569 
    1570 static ALWAYS_INLINE bool isEdgeCase(double x)
    1571 {
    1572     static const uint64_t signbit = 0x8000000000000000ULL;
    1573     static const uint64_t infinity = 0x7fffffffffffffffULL;
    1574     return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 >= infinity - 1;
    1575 }
    1576 
    1577 static ALWAYS_INLINE double mathPowInternal(double x, double y)
    1578 {
    1579     if (!isDenormal(x) && !isDenormal(y)) {
    1580         double libmResult = pow(x, y);
    1581         if (libmResult || isEdgeCase(x) || isEdgeCase(y))
    1582             return libmResult;
    1583     }
    1584     return fdlibmPow(x, y);
    1585 }
    1586 
    1587 #else
    1588 
    1589 ALWAYS_INLINE double mathPowInternal(double x, double y)
    1590 {
    1591     return pow(x, y);
    1592 }
    1593 
    1594 #endif
    1595 
    1596 double JIT_OPERATION operationMathPow(double x, double y)
    1597 {
    1598     if (std::isnan(y))
    1599         return PNaN;
    1600     if (std::isinf(y) && fabs(x) == 1)
    1601         return PNaN;
    1602     return mathPowInternal(x, y);
    1603 }
    1604 
    16051216void JIT_OPERATION operationPutByIndex(ExecState* exec, EncodedJSValue encodedArrayValue, int32_t index, EncodedJSValue encodedValue)
    16061217{
Note: See TracChangeset for help on using the changeset viewer.