5
Most read
6
Most read
8
Most read
NATIONAL CHENG KUNG UNIVERSITY
Inst. of Manufacturing Information & Systems
DIGITAL IMAGE PROCESSING AND SOFTWARE
IMPLEMENTATION
HOMEWORK 1
Professor name: Chen, Shang-Liang
Student name: Nguyen Van Thanh
Student ID: P96007019
Class: P9-009 Image Processing and Software Implementation
Time: [4] 2  4
1
Table of Contents
PROBLEM................................................................................................................................................................. 2
SOLUTION................................................................................................................................................................ 3
3.2.1 Negative transformation ............................................................................................................................ 3
3.2.2 Log transformation..................................................................................................................................... 3
3.2.3 Power-law transformation ......................................................................................................................... 4
3.2.4 Piecewise-linear transformation ................................................................................................................ 7
3.3.1 Histogram equalization.............................................................................................................................10
3.4.2 Subtraction ...............................................................................................................................................12
3.6.1 Smoothing Linear Filters...........................................................................................................................14
3.6.2 Order-Statistics Filters..............................................................................................................................16
3.7.2 The Laplacian............................................................................................................................................17
3.7.3 The Gradient.............................................................................................................................................19
2
PROBLEM
影像處理與軟體實現[HW1]
課程碼:P953300 授課教授:陳響亮 教授 助教:陳怡瑄 日期:2011/03/10
題目:請以C# 撰寫一程式,可讀入一影像檔,並可執行以下之影像
空間強化功能。
a. 每一程式需設計一適當之人機操作介面。
b. 每一功能請以不同方法分開撰寫,各項參數需讓使用者自行輸入。
c. 以C# 撰寫時,可直接呼叫Matlab 現有函式,但呼叫多寡,將列為評分考量。
(呼叫越少,分數越高)
一、 基本灰階轉換
1. 影像負片轉換
2. Log轉換
3. 乘冪律轉換
4. 逐段線性函數轉換
二、 直方圖處理
1. 直方圖等化處理
2. 直方圖匹配處理
三、 使用算術/邏輯運算做增強
1. 影像相減增強
2. 影像平均增強
四、 平滑空間濾波器
1. 平滑線性濾波器
2. 排序統計濾波器
五、 銳化空間濾波器
1. 拉普拉斯銳化空間濾波器
2. 梯度銳化空間濾波器
3
SOLUTION
Using Matlab for solving the problem
3.2.1 Negative transformation
Given an image (input image) with gray level in the interval [0, L-1], the negative of that
image is obtained by using the expression: s = (L – 1) – r,
Where r is the gray level of the input image, and s is the gray level of the output.
In Matlab, we use the commands,
>> f=imread('Fig3.04(a).jpg');
g = imcomplement(f);
imshow(f), figure, imshow(g)
In/output image Out/in image
3.2.2 Log transformation
The Logarithm transformations are implemented using the expression:
s = c*log (1+r).
In this case, c = 1. The commands,
>> f=imread('Fig3.05(a).jpg');
g=im2uint8 (mat2gray (log (1+double (f))));
imshow(f), figure, imshow(g)
4
In/output image Out/in image
3.2.3 Power-law transformation
Power-law transformations have the basic form,
s = c*r. ^, where c and  are positive constants.
The commands,
>> f = imread ('Fig3.08(a).jpg');
f = im2double (f);
[m n]=size (f);
c = 1;
gama = input('gama value = ');
for i=1:m
for j=1:n
g(i,j)=c*(f(i,j)^gama);
end
end;
imshow(f),figure, imshow(g);
With  = 0.6, 0.4 and 0.3 respectively, we can get three images respectively, as shown in the
following figure,
5
a b
c d
(a) The original image. (b) – (d) result of applying the power -
law transformation with  = 0.6, 0.4 and 0.3 respectively
6
a b
c d
(a) The original image. (b) – (d) result of applying the power -
law transformation with  = 3, 4 and 5 respectively
7
3.2.4 Piecewise-linear transformation
Contrast stretching
The commands,
% function contrast stretching;
>> r1 = 100; s1 = 40;
r2 = 141; s2 = 216;
a = (s1/r1);
b = ((s2-s1)/ (r2-r1));
c = ((255-s2)/ (255-r2));
k = 0:r1;
y1 = a*k;
plot (k,y1); hold on;
k = r1: r2;
y2 = b*(k - r1) + a*r1;
plot (k,y2);
k = r2+1:255;
y3 = c*(k-r2) + b*(r2-r1)+a*r1;
plot (k,y3);
xlim([0 255]);
ylim([0 255]);
xlabel('input gray level, r');
ylabel('outphut gray level, s');
title('Form of transformation');
hold on; figure;
f = imread('Fig3.10(b).jpg');
[m, n] = size (f);
for i = 1:m
for j = 1:n
if((f(i,j)>=0) & (f(i,j)<=r1))
g(i,j) = a*f(i,j);
else
if((f(i,j)>r1) & (f(i,j)<=r2))
g(i,j) = ((b*(f(i,j)-r1)+(a*r1)));
else
if((f(i,j)>r2) & (f(i,j)<=255))
g(i,j) = ((c*(f(i,j)-r2)+(b*(r2-r1)+(a*r1))));
end
end
end
end
end
imshow(f), figure, imshow(g);
% function thresholding
>> f = imread('Fig3.10(b).jpg');
[m, n] = size(f);
for i = 1:m
for j = 1:n
if((f(i,j)>=0) & (f(i,j)<128))
8
g(i,j) = 0;
else
g(i,j) = 255;
end
end
end
imshow(f), figure, imshow(g);
(a) Form of contrast stretching transformation function.
(b) A low-contrast image. (c) Result of contrast stretching. (d)
Result of thresholding
a b
c d
9
(a) An 8-bit image. (b) – (f) The 8 bit plane
a b c
d e f
10
3.3.1 Histogram equalization
The transformation function of histogram equalization is
( ) ∑ ( ) ∑
k = 0, 1, …, L – 1.
% Histogram;
f1 = imread('Fig3.15(a)1top.jpg');
f2 = imread('Fig3.15(a)2.jpg');
f3 = imread('Fig3.15(a)3.jpg');
f4 = imread('Fig3.15(a)4.jpg');
f = input('image: ');
imhist(f), figure;
g = histeq(f, 256);
imshow(g), figure, imhist(g);
a b c
Fig. 3.17 Transformation functions (1) through (4) were obtained from the
images in Fig. 3.17 (a), using histogram equalization
11
a b
Fig. 3.15 Four
basic image
types: dark,
light, low
contrast, high
contrast, and
their
corresponding
histograms
12
a b c
Fig. 3.17 (a) Image from Fig. 3.15. (b) Results of histogram equalization. (c)
Corresponding histograms.
13
3.4.2 Subtraction
The difference between tow images f (x, y) and h (x, y), expressed as
g (x, y) = f (x, y) – h (x, y),
The commands,
f1 = imread('Fig3.28.a.jpg');
f2 = imread('Fig3.28.b.jpg');
f3 = imsubtract(f1,f2);
f4 = histeq(f3,256);
imshow(f3), figure, imshow(f4);
a b
c d
Fig. 3.17 (a) The first image. (b) The second image. (c) Difference between (a) and
(b). (d) Histogram – equalized difference image.
14
3.6.1 Smoothing Linear Filters
The commands,
f = imread('Fig3.35(a).jpg');
w3 = 1/ (3. ^2)*ones (3);
g3 = imfilter (f, w3, 'conv', 'replicate', 'same');
w5 = 1/ (5. ^2)*ones (5);
g5 = imfilter (f, w5, 'conv', 'replicate', 'same');
w9 = 1/ (9. ^2)*ones (9);
g9 = imfilter (f, w9, 'conv', 'replicate', 'same');
w15 = 1/ (15. ^2)*ones (15);
g15 = imfilter (f, w15, 'conv', 'replicate', 'same');
w35 = 1/ (35. ^2)*ones (35);
g35 = imfilter(f, w35, 'conv', 'replicate', 'same');
imshow (g3), figure, imshow (g5), figure, imshow (g9), figure, imshow
(g15), figure, imshow (g35), figure;
h = imread ('Fig3.36(a).jpg');
h15 = imfilter (h, w15, 'conv', 'replicate', 'same');
[m, n] = size (h15);
for i = 1:m
for j = 1:n
if ((h15 (i,j)>=0) & (h15 (i,j)<128))
g (i,j) = 0;
else
g(i,j) = 255;
end
end
end
imshow(h15), figure, imshow(g);
15
Fig. 3.35 (a) Original image, of size 500 x 500 pixels. (b) – (f) Result of
smoothing with square averaging filter masks of size n = 3, 5, 9, 15,
and 35 respectively.
a b
c d
e f
16
3.6.2 Order-Statistics Filters
The commands,
>> f = imread('Fig3.37(a).jpg');
w3 = 1/(3.^2)*ones(3);
g3 = imfilter(f, w3, 'conv', 'replicate', 'same');
g = medfilt2(g3);
imshow(g3), figure, imshow(g);
a b c
Fig. 3.36 (a) Original image. (b) Image processed by a 15 x 15 averaging mask.
(c) Result of thresholding (b)
Fig. 3.37 (a) X – ray image of circuit board corrupted by salt – and –
pepper noise. (b) Noise reduction with a 3 x 3 averaging mask. (c)
Noise reduction with a 3 x 3 median filter
a b c
17
3.7.2 The Laplacian
The Laplacian for image enhancement is as follows:
( )
{
( ) ( )
( ) ( )
( )
The commands,
% Laplacian function
f1 = imread('Fig3.40(a).jpg');
w4 = fspecial('laplacian', 0);
g1 = imfilter(f1, w4, 'replicate');
imshow(g1, [ ]), figure;
f2 = im2double(f1);
g2 = imfilter(f2, w4, 'replicate');
imshow(g2, [ ]), figure;
g3 = imsubtract(f2,g2);
imshow(g3)
Fig. 3.40 (a) Image of
the North Pole
of the moon.
(b) Laplacian
image scaled
for display
purposes. (d)
Image
enhanced by
Eq. (3.7 – 5)
a b
c d
18
% Laplacian simplication
f1 = imread ('Fig3.41(c).jpg');
w5 = [0 -1 0; -1 5 -1; 0 -1 0];
g1 = imfilter (f1, w5, 'replicate');
imshow (g1), figure;
w9 = [-1 -1 -1; -1 9 -1; -1 -1 -1];
g2 = imfilter (f1, w9, 'replicate');
imshow (g2);
0 -1 0
-1 5 -1
0 -1 0
-1 -1 -1
-1 9 -1
-1 -1 -1
a b c
d e
Fig. 3.37 (a) Composite Laplacian mask. (b) A second composite
mask. (c) Scanning electron microscope image. (d) and (e)
Result of filtering with the masks in (a) and (b) respectively.
19
3.7.3 The Gradient
The commands,
>> f1 = imread('Fig3.45(a).jpg');
w = fspecial('sobel');
g1 = imfilter(f1, w, 'replicate');
imshow(g1);
a b Fig. 3.45 (a) Optical image of contact lens (note defects on the
boundary at 4 and 5 o’clock). (b) Sobel gradient

More Related Content

PPTX
3. INTRODUCTION TO PROTECTIVE RELAYING.pptx
PPT
Enhancement in spatial domain
PPTX
Diabetes Mellitus
PPTX
Hypertension
PPTX
Republic Act No. 11313 Safe Spaces Act (Bawal Bastos Law).pptx
PPTX
Power Point Presentation on Artificial Intelligence
PDF
Caça palavras - Bullying
3. INTRODUCTION TO PROTECTIVE RELAYING.pptx
Enhancement in spatial domain
Diabetes Mellitus
Hypertension
Republic Act No. 11313 Safe Spaces Act (Bawal Bastos Law).pptx
Power Point Presentation on Artificial Intelligence
Caça palavras - Bullying

What's hot (20)

PPT
image enhancement
PPTX
Histogram Equalization
PDF
Image sampling and quantization
PPTX
Digital Image Processing
PPT
6.frequency domain image_processing
PPTX
Image Filtering in the Frequency Domain
PPT
Spatial filtering using image processing
PPTX
Otsu binarization
PDF
04 image enhancement edge detection
PDF
Dc ch03 : data transmission
PPTX
Dilation and erosion
PPTX
Intensity Transformation Functions of image with Matlab
ODP
image compression ppt
PPTX
Dip 5 mathematical preliminaries
PPT
Data Redundacy
PDF
Wiener Filter
PPTX
Digital Image restoration
PPT
Digital image processing ppt
PPTX
Module 31
PPTX
Gaussian noise
image enhancement
Histogram Equalization
Image sampling and quantization
Digital Image Processing
6.frequency domain image_processing
Image Filtering in the Frequency Domain
Spatial filtering using image processing
Otsu binarization
04 image enhancement edge detection
Dc ch03 : data transmission
Dilation and erosion
Intensity Transformation Functions of image with Matlab
image compression ppt
Dip 5 mathematical preliminaries
Data Redundacy
Wiener Filter
Digital Image restoration
Digital image processing ppt
Module 31
Gaussian noise
Ad

Similar to Digital image processing using matlab: basic transformations, filters and operators (20)

PPT
annotated-chap-3-gw.ppt
PDF
Aistats RTD
DOCX
Existing method used for analysis of images
DOCX
Existing method used for analysis of images
DOCX
PPT
G Intensity transformation and spatial filtering(1).ppt
PPTX
Lect 03 - first portion
PPT
Ch 3. Image Enhancement in the Spatial Domain_okay.ppt
PPTX
Notes on image processing
PDF
DIP_Manual.pdf
DOC
1.funtions (1)
PDF
Digital Image processing is the class of methods that deal with manipulating ...
PPT
Lect02.ppt
PPTX
ch-2.2 histogram image processing .pptx
PDF
Funções 1
PPTX
Introduction to image contrast and enhancement method
PDF
Hand book of Howard Anton calculus exercises 8th edition
PPT
Computer vision 3 4
DOCX
Image Processing Homework 1
annotated-chap-3-gw.ppt
Aistats RTD
Existing method used for analysis of images
Existing method used for analysis of images
G Intensity transformation and spatial filtering(1).ppt
Lect 03 - first portion
Ch 3. Image Enhancement in the Spatial Domain_okay.ppt
Notes on image processing
DIP_Manual.pdf
1.funtions (1)
Digital Image processing is the class of methods that deal with manipulating ...
Lect02.ppt
ch-2.2 histogram image processing .pptx
Funções 1
Introduction to image contrast and enhancement method
Hand book of Howard Anton calculus exercises 8th edition
Computer vision 3 4
Image Processing Homework 1
Ad

Recently uploaded (20)

PDF
My India Quiz Book_20210205121199924.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PPTX
Module on health assessment of CHN. pptx
PDF
English Textual Question & Ans (12th Class).pdf
PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
PDF
Mucosal Drug Delivery system_NDDS_BPHARMACY__SEM VII_PCI.pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
Computer Architecture Input Output Memory.pptx
PDF
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PPTX
Education and Perspectives of Education.pptx
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
PDF
semiconductor packaging in vlsi design fab
PDF
Complications of Minimal Access-Surgery.pdf
PDF
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
My India Quiz Book_20210205121199924.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
Module on health assessment of CHN. pptx
English Textual Question & Ans (12th Class).pdf
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
Mucosal Drug Delivery system_NDDS_BPHARMACY__SEM VII_PCI.pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Cambridge-Practice-Tests-for-IELTS-12.docx
Hazard Identification & Risk Assessment .pdf
Computer Architecture Input Output Memory.pptx
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
Environmental Education MCQ BD2EE - Share Source.pdf
Education and Perspectives of Education.pptx
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
AI-driven educational solutions for real-life interventions in the Philippine...
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
semiconductor packaging in vlsi design fab
Complications of Minimal Access-Surgery.pdf
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf

Digital image processing using matlab: basic transformations, filters and operators

  • 1. NATIONAL CHENG KUNG UNIVERSITY Inst. of Manufacturing Information & Systems DIGITAL IMAGE PROCESSING AND SOFTWARE IMPLEMENTATION HOMEWORK 1 Professor name: Chen, Shang-Liang Student name: Nguyen Van Thanh Student ID: P96007019 Class: P9-009 Image Processing and Software Implementation Time: [4] 2  4
  • 2. 1 Table of Contents PROBLEM................................................................................................................................................................. 2 SOLUTION................................................................................................................................................................ 3 3.2.1 Negative transformation ............................................................................................................................ 3 3.2.2 Log transformation..................................................................................................................................... 3 3.2.3 Power-law transformation ......................................................................................................................... 4 3.2.4 Piecewise-linear transformation ................................................................................................................ 7 3.3.1 Histogram equalization.............................................................................................................................10 3.4.2 Subtraction ...............................................................................................................................................12 3.6.1 Smoothing Linear Filters...........................................................................................................................14 3.6.2 Order-Statistics Filters..............................................................................................................................16 3.7.2 The Laplacian............................................................................................................................................17 3.7.3 The Gradient.............................................................................................................................................19
  • 3. 2 PROBLEM 影像處理與軟體實現[HW1] 課程碼:P953300 授課教授:陳響亮 教授 助教:陳怡瑄 日期:2011/03/10 題目:請以C# 撰寫一程式,可讀入一影像檔,並可執行以下之影像 空間強化功能。 a. 每一程式需設計一適當之人機操作介面。 b. 每一功能請以不同方法分開撰寫,各項參數需讓使用者自行輸入。 c. 以C# 撰寫時,可直接呼叫Matlab 現有函式,但呼叫多寡,將列為評分考量。 (呼叫越少,分數越高) 一、 基本灰階轉換 1. 影像負片轉換 2. Log轉換 3. 乘冪律轉換 4. 逐段線性函數轉換 二、 直方圖處理 1. 直方圖等化處理 2. 直方圖匹配處理 三、 使用算術/邏輯運算做增強 1. 影像相減增強 2. 影像平均增強 四、 平滑空間濾波器 1. 平滑線性濾波器 2. 排序統計濾波器 五、 銳化空間濾波器 1. 拉普拉斯銳化空間濾波器 2. 梯度銳化空間濾波器
  • 4. 3 SOLUTION Using Matlab for solving the problem 3.2.1 Negative transformation Given an image (input image) with gray level in the interval [0, L-1], the negative of that image is obtained by using the expression: s = (L – 1) – r, Where r is the gray level of the input image, and s is the gray level of the output. In Matlab, we use the commands, >> f=imread('Fig3.04(a).jpg'); g = imcomplement(f); imshow(f), figure, imshow(g) In/output image Out/in image 3.2.2 Log transformation The Logarithm transformations are implemented using the expression: s = c*log (1+r). In this case, c = 1. The commands, >> f=imread('Fig3.05(a).jpg'); g=im2uint8 (mat2gray (log (1+double (f)))); imshow(f), figure, imshow(g)
  • 5. 4 In/output image Out/in image 3.2.3 Power-law transformation Power-law transformations have the basic form, s = c*r. ^, where c and  are positive constants. The commands, >> f = imread ('Fig3.08(a).jpg'); f = im2double (f); [m n]=size (f); c = 1; gama = input('gama value = '); for i=1:m for j=1:n g(i,j)=c*(f(i,j)^gama); end end; imshow(f),figure, imshow(g); With  = 0.6, 0.4 and 0.3 respectively, we can get three images respectively, as shown in the following figure,
  • 6. 5 a b c d (a) The original image. (b) – (d) result of applying the power - law transformation with  = 0.6, 0.4 and 0.3 respectively
  • 7. 6 a b c d (a) The original image. (b) – (d) result of applying the power - law transformation with  = 3, 4 and 5 respectively
  • 8. 7 3.2.4 Piecewise-linear transformation Contrast stretching The commands, % function contrast stretching; >> r1 = 100; s1 = 40; r2 = 141; s2 = 216; a = (s1/r1); b = ((s2-s1)/ (r2-r1)); c = ((255-s2)/ (255-r2)); k = 0:r1; y1 = a*k; plot (k,y1); hold on; k = r1: r2; y2 = b*(k - r1) + a*r1; plot (k,y2); k = r2+1:255; y3 = c*(k-r2) + b*(r2-r1)+a*r1; plot (k,y3); xlim([0 255]); ylim([0 255]); xlabel('input gray level, r'); ylabel('outphut gray level, s'); title('Form of transformation'); hold on; figure; f = imread('Fig3.10(b).jpg'); [m, n] = size (f); for i = 1:m for j = 1:n if((f(i,j)>=0) & (f(i,j)<=r1)) g(i,j) = a*f(i,j); else if((f(i,j)>r1) & (f(i,j)<=r2)) g(i,j) = ((b*(f(i,j)-r1)+(a*r1))); else if((f(i,j)>r2) & (f(i,j)<=255)) g(i,j) = ((c*(f(i,j)-r2)+(b*(r2-r1)+(a*r1)))); end end end end end imshow(f), figure, imshow(g); % function thresholding >> f = imread('Fig3.10(b).jpg'); [m, n] = size(f); for i = 1:m for j = 1:n if((f(i,j)>=0) & (f(i,j)<128))
  • 9. 8 g(i,j) = 0; else g(i,j) = 255; end end end imshow(f), figure, imshow(g); (a) Form of contrast stretching transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding a b c d
  • 10. 9 (a) An 8-bit image. (b) – (f) The 8 bit plane a b c d e f
  • 11. 10 3.3.1 Histogram equalization The transformation function of histogram equalization is ( ) ∑ ( ) ∑ k = 0, 1, …, L – 1. % Histogram; f1 = imread('Fig3.15(a)1top.jpg'); f2 = imread('Fig3.15(a)2.jpg'); f3 = imread('Fig3.15(a)3.jpg'); f4 = imread('Fig3.15(a)4.jpg'); f = input('image: '); imhist(f), figure; g = histeq(f, 256); imshow(g), figure, imhist(g); a b c Fig. 3.17 Transformation functions (1) through (4) were obtained from the images in Fig. 3.17 (a), using histogram equalization
  • 12. 11 a b Fig. 3.15 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms
  • 13. 12 a b c Fig. 3.17 (a) Image from Fig. 3.15. (b) Results of histogram equalization. (c) Corresponding histograms.
  • 14. 13 3.4.2 Subtraction The difference between tow images f (x, y) and h (x, y), expressed as g (x, y) = f (x, y) – h (x, y), The commands, f1 = imread('Fig3.28.a.jpg'); f2 = imread('Fig3.28.b.jpg'); f3 = imsubtract(f1,f2); f4 = histeq(f3,256); imshow(f3), figure, imshow(f4); a b c d Fig. 3.17 (a) The first image. (b) The second image. (c) Difference between (a) and (b). (d) Histogram – equalized difference image.
  • 15. 14 3.6.1 Smoothing Linear Filters The commands, f = imread('Fig3.35(a).jpg'); w3 = 1/ (3. ^2)*ones (3); g3 = imfilter (f, w3, 'conv', 'replicate', 'same'); w5 = 1/ (5. ^2)*ones (5); g5 = imfilter (f, w5, 'conv', 'replicate', 'same'); w9 = 1/ (9. ^2)*ones (9); g9 = imfilter (f, w9, 'conv', 'replicate', 'same'); w15 = 1/ (15. ^2)*ones (15); g15 = imfilter (f, w15, 'conv', 'replicate', 'same'); w35 = 1/ (35. ^2)*ones (35); g35 = imfilter(f, w35, 'conv', 'replicate', 'same'); imshow (g3), figure, imshow (g5), figure, imshow (g9), figure, imshow (g15), figure, imshow (g35), figure; h = imread ('Fig3.36(a).jpg'); h15 = imfilter (h, w15, 'conv', 'replicate', 'same'); [m, n] = size (h15); for i = 1:m for j = 1:n if ((h15 (i,j)>=0) & (h15 (i,j)<128)) g (i,j) = 0; else g(i,j) = 255; end end end imshow(h15), figure, imshow(g);
  • 16. 15 Fig. 3.35 (a) Original image, of size 500 x 500 pixels. (b) – (f) Result of smoothing with square averaging filter masks of size n = 3, 5, 9, 15, and 35 respectively. a b c d e f
  • 17. 16 3.6.2 Order-Statistics Filters The commands, >> f = imread('Fig3.37(a).jpg'); w3 = 1/(3.^2)*ones(3); g3 = imfilter(f, w3, 'conv', 'replicate', 'same'); g = medfilt2(g3); imshow(g3), figure, imshow(g); a b c Fig. 3.36 (a) Original image. (b) Image processed by a 15 x 15 averaging mask. (c) Result of thresholding (b) Fig. 3.37 (a) X – ray image of circuit board corrupted by salt – and – pepper noise. (b) Noise reduction with a 3 x 3 averaging mask. (c) Noise reduction with a 3 x 3 median filter a b c
  • 18. 17 3.7.2 The Laplacian The Laplacian for image enhancement is as follows: ( ) { ( ) ( ) ( ) ( ) ( ) The commands, % Laplacian function f1 = imread('Fig3.40(a).jpg'); w4 = fspecial('laplacian', 0); g1 = imfilter(f1, w4, 'replicate'); imshow(g1, [ ]), figure; f2 = im2double(f1); g2 = imfilter(f2, w4, 'replicate'); imshow(g2, [ ]), figure; g3 = imsubtract(f2,g2); imshow(g3) Fig. 3.40 (a) Image of the North Pole of the moon. (b) Laplacian image scaled for display purposes. (d) Image enhanced by Eq. (3.7 – 5) a b c d
  • 19. 18 % Laplacian simplication f1 = imread ('Fig3.41(c).jpg'); w5 = [0 -1 0; -1 5 -1; 0 -1 0]; g1 = imfilter (f1, w5, 'replicate'); imshow (g1), figure; w9 = [-1 -1 -1; -1 9 -1; -1 -1 -1]; g2 = imfilter (f1, w9, 'replicate'); imshow (g2); 0 -1 0 -1 5 -1 0 -1 0 -1 -1 -1 -1 9 -1 -1 -1 -1 a b c d e Fig. 3.37 (a) Composite Laplacian mask. (b) A second composite mask. (c) Scanning electron microscope image. (d) and (e) Result of filtering with the masks in (a) and (b) respectively.
  • 20. 19 3.7.3 The Gradient The commands, >> f1 = imread('Fig3.45(a).jpg'); w = fspecial('sobel'); g1 = imfilter(f1, w, 'replicate'); imshow(g1); a b Fig. 3.45 (a) Optical image of contact lens (note defects on the boundary at 4 and 5 o’clock). (b) Sobel gradient