
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy linspace() Function
The Numpy linspace() function is used to return a array of evenly spaced values over a specified interval. This functions takes in parameters such as start, stop, and num, and returns an array with a number of equally spaced values between start and stop. It is similar to numpy.arange() function but instead of a step, it uses a sample number.
In NumPy, numpy.linspace() and arange() are both functions used to generate arrays of evenly spaced values over a specified interval. The key difference is that numpy.linspace() generates a specified number of evenly spaced samples between a start and stop value (inclusive by default), while numpy.arange() generates evenly spaced values within a specified range, determined by a fixed step size.
Syntax
Following is the syntax of the Numpy linspace() function −
numpy.linspace(start, stop, num, endpoint = True, retstep = False, dtype = None, axis = 0)
Parameters
Following are the parameters of the Numpy linspace() function −
- start: It is the start value of the sequence, by default start=0
- stop: It is the end value of the sequence
- num(optional): This represents number of samples to generate
- endpoint(optional): This specifies whether to include end value. If True, stop is the last sample. Otherwise, it is not included. By Default, endpoint=True.
- retstep(optional): If True, return (samples, step), where step is the spacing between samples.
- dtype(optional): This represents the type of output array
- axis(optional): This is the axis in the result to store the samples. This is relavent only if start or stop are array-like(i.e it is not scalars but array).
Return Values
This function returns a NumPy array containing a num evenly spaced values within a specified interval.
Example
Following is a basic example to generate a evenly spaced numpy array using Numpy linspace() function −
import numpy as np my_Array = np.linspace(11,20,5) print("Numpy Array -",my_Array)
Output
Following is the output of the above code −
Numpy Array - [11. 13.25 15.5 17.75 20. ]
Example : Generating 2D Numpy Array
Using the numpy.linspace() function, we can generate a 2-dimensional array by specifying the number of equally spaced values over a given range and then reshaping the resulting 1-dimensional array into the desired 2-dimensional shape using reshape() function.
Here, we have generated a 2-D array of 3 rows and 4 columns using numpy.linspace(), where the values are linearly spaced from 1 to 10 −
import numpy as np # Generating 12 equally spaced values between 1 and 10 array_1d = np.linspace(1, 10, 12) # Reshaping into a 2D array (e.g., 3 rows and 4 columns) array_2d = array_1d.reshape(3, 4) print("Numpy 2D Array -\n",array_2d)
Output
Following is the output of the above code −
Numpy 2D Array - [[ 1. 1.81818182 2.63636364 3.45454545] [ 4.27272727 5.09090909 5.90909091 6.72727273] [ 7.54545455 8.36363636 9.18181818 10. ]]
Example : Using Negative Values in 'linspace()'
Negative values can be used as arguments in the numpy.linspace() function to create arrays that include negative numbers within the specified range.
In the following example, we have created an array with 16 equally spaced values between -5 and 5, then reshape it into a 4x4 matrix −
import numpy as np # Generating 16 equally spaced values between -5 and 5 array_1d = np.linspace(-5, 5, 16) # Reshaping into a 2D array (4 rows and 4 columns) array_2d = array_1d.reshape(4, 4) print("Numpy 2D Array -\n", array_2d)
Output
Following is the output of the above code −
Numpy 2D Array - [[-5. -4.33333333 -3.66666667 -3. ] [-2.33333333 -1.66666667 -1. -0.33333333] [ 0.33333333 1. 1.66666667 2.33333333] [ 3. 3.66666667 4.33333333 5. ]]