
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy Arrays
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy Creating and Manipulating Arrays
- NumPy - Array Creation Routines
- NumPy - Array Manipulation
- NumPy - Array from Existing Data
- NumPy - Array From Numerical Ranges
- NumPy - Iterating Over Array
- NumPy - Reshaping Arrays
- NumPy - Concatenating Arrays
- NumPy - Stacking Arrays
- NumPy - Splitting Arrays
- NumPy - Flattening Arrays
- NumPy - Transposing Arrays
- NumPy Indexing & Slicing
- NumPy - Indexing & Slicing
- NumPy - Indexing
- NumPy - Slicing
- NumPy - Advanced Indexing
- NumPy - Fancy Indexing
- NumPy - Field Access
- NumPy - Slicing with Boolean Arrays
- NumPy Array Attributes & Operations
- NumPy - Array Attributes
- NumPy - Array Shape
- NumPy - Array Size
- NumPy - Array Strides
- NumPy - Array Itemsize
- NumPy - Broadcasting
- NumPy - Arithmetic Operations
- NumPy - Array Addition
- NumPy - Array Subtraction
- NumPy - Array Multiplication
- NumPy - Array Division
- NumPy Advanced Array Operations
- NumPy - Swapping Axes of Arrays
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Element-wise Array Comparisons
- NumPy - Filtering Arrays
- NumPy - Joining Arrays
- NumPy - Sort, Search & Counting Functions
- NumPy - Searching Arrays
- NumPy - Union of Arrays
- NumPy - Finding Unique Rows
- NumPy - Creating Datetime Arrays
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy Sorting and Advanced Manipulation
- NumPy - Sorting Arrays
- NumPy - Sorting along an axis
- NumPy - Sorting with Fancy Indexing
- NumPy - Structured Arrays
- NumPy - Creating Structured Arrays
- NumPy - Manipulating Structured Arrays
- NumPy - Record Arrays
- Numpy - Loading Arrays
- Numpy - Saving Arrays
- NumPy - Append Values to an Array
- NumPy - Swap Columns of Array
- NumPy - Insert Axes to an Array
- NumPy Handling Missing Data
- NumPy - Handling Missing Data
- NumPy - Identifying Missing Values
- NumPy - Removing Missing Data
- NumPy - Imputing Missing Data
- NumPy Performance Optimization
- NumPy - Performance Optimization with Arrays
- NumPy - Vectorization with Arrays
- NumPy - Memory Layout of Arrays
- Numpy Linear Algebra
- NumPy - Linear Algebra
- NumPy - Matrix Library
- NumPy - Matrix Addition
- NumPy - Matrix Subtraction
- NumPy - Matrix Multiplication
- NumPy - Element-wise Matrix Operations
- NumPy - Dot Product
- NumPy - Matrix Inversion
- NumPy - Determinant Calculation
- NumPy - Eigenvalues
- NumPy - Eigenvectors
- NumPy - Singular Value Decomposition
- NumPy - Solving Linear Equations
- NumPy - Matrix Norms
- NumPy Element-wise Matrix Operations
- NumPy - Sum
- NumPy - Mean
- NumPy - Median
- NumPy - Min
- NumPy - Max
- NumPy Set Operations
- NumPy - Unique Elements
- NumPy - Intersection
- NumPy - Union
- NumPy - Difference
- NumPy Random Number Generation
- NumPy - Random Generator
- NumPy - Permutations & Shuffling
- NumPy - Uniform distribution
- NumPy - Normal distribution
- NumPy - Binomial distribution
- NumPy - Poisson distribution
- NumPy - Exponential distribution
- NumPy - Rayleigh Distribution
- NumPy - Logistic Distribution
- NumPy - Pareto Distribution
- NumPy - Visualize Distributions With Sea born
- NumPy - Matplotlib
- NumPy - Multinomial Distribution
- NumPy - Chi Square Distribution
- NumPy - Zipf Distribution
- NumPy File Input & Output
- NumPy - I/O with NumPy
- NumPy - Reading Data from Files
- NumPy - Writing Data to Files
- NumPy - File Formats Supported
- NumPy Mathematical Functions
- NumPy - Mathematical Functions
- NumPy - Trigonometric functions
- NumPy - Exponential Functions
- NumPy - Logarithmic Functions
- NumPy - Hyperbolic functions
- NumPy - Rounding functions
- NumPy Fourier Transforms
- NumPy - Discrete Fourier Transform (DFT)
- NumPy - Fast Fourier Transform (FFT)
- NumPy - Inverse Fourier Transform
- NumPy - Fourier Series and Transforms
- NumPy - Signal Processing Applications
- NumPy - Convolution
- NumPy Polynomials
- NumPy - Polynomial Representation
- NumPy - Polynomial Operations
- NumPy - Finding Roots of Polynomials
- NumPy - Evaluating Polynomials
- NumPy Statistics
- NumPy - Statistical Functions
- NumPy - Descriptive Statistics
- NumPy Datetime
- NumPy - Basics of Date and Time
- NumPy - Representing Date & Time
- NumPy - Date & Time Arithmetic
- NumPy - Indexing with Datetime
- NumPy - Time Zone Handling
- NumPy - Time Series Analysis
- NumPy - Working with Time Deltas
- NumPy - Handling Leap Seconds
- NumPy - Vectorized Operations with Datetimes
- NumPy ufunc
- NumPy - ufunc Introduction
- NumPy - Creating Universal Functions (ufunc)
- NumPy - Arithmetic Universal Function (ufunc)
- NumPy - Rounding Decimal ufunc
- NumPy - Logarithmic Universal Function (ufunc)
- NumPy - Summation Universal Function (ufunc)
- NumPy - Product Universal Function (ufunc)
- NumPy - Difference Universal Function (ufunc)
- NumPy - Finding LCM with ufunc
- NumPy - ufunc Finding GCD
- NumPy - ufunc Trigonometric
- NumPy - Hyperbolic ufunc
- NumPy - Set Operations ufunc
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Cheatsheet
- NumPy - Useful Resources
- NumPy - Discussion
- NumPy Compiler
Numpy roll() Function
The Numpy roll() function is used to shift the elements of an array along a specified axis. The elements that roll beyond the last position are re-introduced at the first. This function is particularly useful for cyclically shifting elements, such as moving the last elements of an array to the front or shifting elements in a circular fashion.
The function works by rolling the elements along the specified axis, with the values that go beyond the array's bounds being wrapped around to the other side and the axis can be specified with both positive and negative values. It can be applied to arrays of any dimension.
Syntax
Following is the syntax of the Numpy roll() function −
numpy.roll(m, shift, axis=None)
Parameters
Following are the parameters of the Numpy roll() function −
- m: The input array whose elements are to be shifted.
- shift: The number of positions by which the array elements are to be shifted. A positive value shifts the elements to the right, while a negative value shifts them to the left.
- axis (optional): Axis or axes along which the array is shifted. If not specified, the array is flattened before shifting, and then reshaped back to its original shape.
Return Type
This function returns a view of the input array with its elements shifted along the specified axis. The original array remains unchanged.
Example
Following is a basic example of shifting the elements of a 1D array using the Numpy roll() function −
import numpy as np my_array = np.array([10, 20, 30, 40, 50]) print("Original Array:", my_array) result = np.roll(my_array, 2) print("Array after shifting right by 2 positions:", result)
Output
Following is the output of the above code −
Original Array: [10 20 30 40 50] Array after shifting right by 2 positions: [40 50 10 20 30]
Example: Shifting Along a Specific Axis
The roll() function can also shift elements along a specific axis in multi-dimensional arrays. In the following example, we shift the elements of a 2D array along axis 0 (rows) by 1 position −
import numpy as np my_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print("Original Array:\n", my_array) result = np.roll(my_array, 1, axis=0) print("Array after shifting rows by 1 position:\n", result)
Output
Following is the output of the above code −
Original Array: [[1 2 3] [4 5 6] [7 8 9]] Array after shifting rows by 1 position: [[7 8 9] [1 2 3] [4 5 6]]
Example: Negative Shifting
We can also shift elements in the opposite direction by using a negative value for the shift parameter. Here, we have shifted the elements of a 2D array along axis 1 (columns) by -1 position −
import numpy as np my_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print("Original Array:\n", my_array) result = np.roll(my_array, -1, axis=1) print("Array after shifting columns by -1 position:\n", result)
Output
Following is the output of the above code −
Original Array: [[1 2 3] [4 5 6] [7 8 9]] Array after shifting columns by -1 position: [[2 3 1] [5 6 4] [8 9 7]]
Example: Shifting a 3D Array
The roll() function can also be applied to multi-dimensional arrays. Here, we have shifted the elements of a 3D array along axis 2 (depth) by 1 position −
import numpy as np my_array = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) print("Original Array:\n", my_array) result = np.roll(my_array, 1, axis=2) print("3D Array after shifting along depth axis:\n", result)
Output
Following is the output of the above code −
Original Array: [[[1 2] [3 4]] [[5 6] [7 8]]] 3D Array after shifting along depth axis: [[[2 1] [4 3]] [[6 5] [8 7]]]
Example: 1D Array with No Axis Specified
If the axis is not specified, the array is flattened, and the shift is performed on the flattened array. In the following example, we have shifted a 1D array by 2 positions towards rignt −
import numpy as np my_array = np.array([10, 20, 30, 40, 50]) print("Original Array:", my_array) result = np.roll(my_array, 2) print("Array after shifting right by 2 positions:", result)
Output
Following is the output of the above code −
Original Array: [10 20 30 40 50] Array after shifting right by 2 positions: [40 50 10 20 30]